

I-75 South Corridor Master Plan

Study Limits: South of Collier Boulevard (SR 951) to North of Bayshore Road (SR 78)

Final - Existing Conditions Report

November 2021

PREPARED FOR:

FLORIDA DEPARTMENT OF TRANSPORTATION – DISTRICT ONE

FINANCIAL PROJECT IDENTIFICATION (FPID) NUMBER 442519-1-12-01

The Florida Department of Transportation may adopt this planning product into the environmental review process, pursuant to Title 23 U.S.C. § 168(d)(4), or to the state project development process.

FLORIDA DEPARTMENT OF TRANSPORTATION – DISTRICT ONE 801 N. BROADWAY AVENUE, BARTOW, FL 33830 www.SWFLINTERSTATES.com

Contents

1.0 Introd	luction	1
1.1 Pro	ject Description	1
1.2 Pur	rpose of This Report	2
2.0 Applic	cable Studies	4
3.0 Existi	ng Conditions	6
3.1 Exis	sting Roadway Conditions	6
3.1.1	Roadway Classifications and Posted Speed	6
3.1.1	.1 I-75 Mainline	6
3.1.2	Typical Sections	8
3.1.3	Right of Way	
3.1.4	Horizontal Alignment	
3.1.5	Vertical Alignment	
3.1.6	Interchanges	
3.1.7	Drainage	
3.1.8	Lighting	
3.1.9	Utilities	
3.1.10	Pavement Type and Conditions	
3.1.11	Multimodal Facilities	
3.1.12	Railroads	
3.1.13	Signage	
3.1.14	Intelligent Transportation Systems (ITS)	40
3.2 Exis	sting Structures	40
3.3 Exis	sting Environmental Features	
3.3.1	Social and Economic	
3.3.1	.1 Social Features	
3.3.1	.2 Economic	54
3.3.1	.3 Land Use	
3.3.1	.4 Farmland	
3.3.2	Cultural Resources	61
3.3.2	.1 Historic and Archaeological	61
3.3.2	.2 Recreation	
3.3.3	Natural Resources	

	3.3.3.1	Wetlands and Other Surface Waters	66
	3.3.3.2	Water Resources	69
	3.3.3.3	Floodplains	69
	3.3.3.4	Protected Species and Habitat	71
	3.3.3.5	Essential Fish Habitat (EFH)	75
3.	.3.4 PI	nysical Resources	75
	3.3.4.1	Air Quality	75
	3.3.4.2	Contamination	75
	3.3.4.3	Navigation	76
4.0	Referenc	es	78
5.0	Appendic	ces	79

Figures

Figure 1.1: Lee County-Collier County Study Area	3
Figure 2.1: Previous PD&E Studies by FPID Number	5
Figure 3.1: Functional Classification and Speed Limit	7
Figure 3.2: Existing Typical Section – Six Lane Divided Lee County, MP 24.335 to MP 25.730;	MP
26.227 to MP 28.000	9
Figure 3.3: Existing Typical Section – Eight Lane Divided Collier County, MP 50.096 to MP 63.676;	Lee
County MP 0.000 to 24.335; MP 25.730 to MP 26.227; MP 28.000 to MP 28.597	9
Figure 3.4: Bifurcated and Non-Bifurcated Segments	. 10
Figure 3.5: Interchanges	. 15
Figure 3.6: Watersheds	. 17
Figure 3.7: Lee and Collier County Pavement Condition	. 33
Figure 3.8: Lee County Vulnerable User Accommodations	. 37
Figure 3.9: Lee and Collier County Freight	. 38
Figure 3.10: Mounted Highway Signs Relative to Roadside Placement	. 40
Figure 3.11: Existing Structures	.41
Figure 3.12: Existing Land Use	. 58
Figure 3.13: Future Land Use	. 59
Figure 3.14: Farmlands	. 60
Figure 3.15: Recreation Areas	. 65
Figure 3.16: Wetlands and Conservation Lands	. 68
Figure 3.17: Floodplains	. 70
Figure 3.18: Protected Species and Habitat	.74
Figure 3.19: Potentially Contaminated Sites	. 77

Tables

Table 3.1: Bifurcated and Non-Bifurcated Segments	8
Table 3.2: Right of Way Widths	11
Table 3.3: Horizontal Curves	12
Table 3.4: Vertical Curves	13
Table 3.5: Interchanges	14
Table 3.6: Existing Cross Drains	18
Table 3.7: Existing Stormwater Management Sites	21
Table 3.8: Summary of FEMA Flood Insurance Rate Maps (FIRM)	24
Table 3.9: Lee and Collier Lighting Conditions	26
Table 3.10: Utility Agency Owners	28
Table 3.11: Lee County Pavement Condition Survey Values	31
Table 3.12: Collier County Pavement Condition Survey Values	32
Table 3.13: Lee and Collier County Skid Numbers	34
Table 3.14: Summary of Vulnerable User Accommodations by Interchange	35
Table 3.15: Existing Bridges Summary	42
Table 3.16: Existing Bridges Health Data	44
Table 3.17: Bridge Geometric Information	47
Table 3.18: Existing Bridges Load Rating and Posting	49
Table 3.19: Socioeconomic Data	53
Table 3.20: Community Facilities within 500 Feet of Corridor	53
Table 3.21: Existing Land Use	56
Table 3.22: Historic Resources	61
Table 3.23: Archaeological Resources	62
Table 3.24: Recreation Areas/Features	63
Table 3.25: Federal and State Listed Species	71

Appendix A – Straight Line Diagrams

I-75 SOUTH CORRIDOR MASTER PLAN

EXISTING CONDITIONS REPORT

Acronyms and Abbreviations

AADT	Annual Average Daily Traffic
AASHTO	American Association of State Highway and Transportation Officials
ADT	Average Daily Traffic
APE	Area of Potential Effects
BEBR	Bureau of Economic and Business Research
CR	County Road
D/C	Demand to Capacity
EFH	Essential Fish Habitat
ERP	Environmental Resource Permit
ETAT	Environmental Technical Advisory Team
ETDM	Efficient Transportation Decision Making
FDEO	Florida Department of Economic Opportunity
FDOT	Florida Department of Transportation
FDEP	Florida Department of Environmental Protection
FDM	Florida Design Manual
FEMA	Federal Emergency Management Agency
FHWA	Federal Highway Administration
FIHS	Florida Intrastate Highway System
FIRM	Flood Insurance Rate Map
FMSF	Florida Master Site File
FWC	Florida Fish and Wildlife Conservation Commission
GIS	Geographic Information System
HCM	Highway Capacity Manual
ILC	Intermodal Logistics Center
LFR	Load Factor Rating
LOS	Level of Service
MPH	Miles per Hour

NAVD	North American Vertical Datum of 1988
NBI	National Bridge Institute
NGVD	National Geodetic Vertical Datum of 1929
NMFS	National Marine Fisheries Service
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
NWI	National Wetlands Inventory
OFW	Outstanding Florida Waters
OGT	Office of Greenways and Trails
PCMS	Petroleum Contamination Monitoring Sites
PD&E	Project Development and Environment
PER	Preliminary Engineering Report
PTAR	Project Traffic Analysis Report
RCRA	Resource Conservation and Recovery Act
SDR	Sociocultural Data Report
SHPO	State Historic Preservation Officer
SIS	Strategic Intermodal System
SR	State Road
STCM	Storage Tank Contamination Monitoring
SUN	Shared-Use Nonmotorized
SWFWMD	Southwest Florida Water Management District
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
V/C	Volume to Capacity
WBID	Water Body ID

1.0 Introduction

The Florida Department of Transportation (FDOT) is conducting a Master Plan Study to address the operational capacity of Interstate 75 (I-75) to accommodate future travel demand as a result of population and employment growth along the I-75 corridor in Lee and Collier Counties. The study limits extend from south of Collier Boulevard (SR 951) in Collier County to north of Bayshore Road (SR 78) in Lee County. The study spans 42.2 miles in length and traverses the major urban areas of Naples and Fort Myers in southwest Florida. I-75 also crosses the navigable Caloosahatchee River in Lee County, just south of SR 78 (Bayshore Road).

As part of Florida's Strategic Intermodal System (SIS) highway network, I-75 plays a significant role in facilitating business, commuter, visitor, and freight traffic within the state. I-75 also serves as part of the emergency evacuation route network designated by the Florida Division of Emergency Management. I-75 is designated as a primary evacuation route for Collier and Lee Counties. The corridor is vital in facilitating traffic during emergency evacuation periods as it connects to other major arterials and highways of the evacuation route network [such as SR 951 (Collier Boulevard) and SR 78 (Bayshore Road)].

1.1 Project Description

This Master Plan will analyze the feasibility of adding managed lanes in each direction on I-75. Additional general use lanes, collector-distributor roadways, and auxiliary lanes, as well as interchange operational improvements, are also being considered to improve the overall reliability and performance of the interstate system.

Traffic volumes on the corridor are projected to increase to between 66,000 and 155,000 vehicles per day by 2045. Without improvements, the driving conditions will deteriorate below acceptable Level of Service (LOS) targets. The Master Plan will identify opportunities to preserve operational integrity, regional functionality and improve emergency evacuation capabilities. These improvements stand to create possibilities for the provision to operate reliable, efficient transit service within the managed lanes, as well as to provide connections to park and ride or kiss and ride lots located within the project area. *Figure 1.1* shows the project location map for the I-75 Master Plan Study and this Existing Conditions Report.

1.2 Purpose of This Report

The purpose of this Existing Conditions Report is to summarize existing highway and key environmental conditions along I-75's mainline state roadways, interchanges, bridges, and influential non-state roadways. This report will address corridor related features, identifying roadway characteristics as well as critical environmental impacts related to social, economic, cultural, natural, and physical effects. The identification of these major environmental constraints and infrastructure related deficiencies will assist in evaluating affected jurisdictions and be considered when developing future project measures as it relates to intelligent transportations systems and intermodal connections.

2.0 Applicable Studies

I-75 from south of Collier Boulevard (SR 951) to north of Bayshore Road (SR 78) Master Plan Study is part of FDOT District One's Southwest Connect Projects initiative to improve and/or provide managed lanes on the interstate system throughout much of District One. The other two project segments include the Interstate 4 (I-4) from west of SR 570 (Polk Parkway) to west of US 27 and the Interstate 75 (I-75) North Corridor from south of River Road (SR 777) to north of Moccasin Wallow Road (CR 683). Additionally, the Interstate program manager is preparing the Interstate 75 (I-75) Central Corridor Master Plan Study from north of Bayshore Road (SR 78) to south of River Road (SR 777).

These three studies analyze the existing and expected future traffic (i.e., demand) on the interstate system and provide a regional perspective to identify the areas where future demand is predicted. The improvements identified in these studies may include widening, modifying interchanges, and evaluating requests for new interchanges.

Figure 2.1 depicts the limits of the following previous PD&E Studies:

- 442519-1: I-75 (SR 93) from E of SR 951 to the Lee/Charlotte County Line Pre-Const. Underway Corridor/Subarea Planning
- 200742-1: I-75 at Golden Gate Parkway Interchange Completed PD&E/EMO Study
- 406313-1: I-75 from SR 951 to S of Bonita Beach Road Completed PD&E/EMO Study
- 406313-5: I-75 (SR 93) at Collier Blvd/SR 84 Interchange Modification Completed PD&E/ EMO Study
- 442519-3: I-75 (SR 93) from Collier/Lee County Line to SR 78 (Bayshore Rd) Pre-Const. Underway PD&E/EMO Study
- 442521-1: Interstate Program Manager GEC Pre-Const. Underway PD&E/EMO Study
- 446296-1: I-75 (SR 93) at CR 876/Daniels Parkway Pre-Const. Underway PD&E/EMO Study
- 442519-2: I-75 (SR 93) from E of SR 951 to Collier/Lee County Line Pre-Const. Underway PD&E/EMO Study

3.0 Existing Conditions

3.1 Existing Roadway Conditions

3.1.1 Roadway Classifications and Posted Speed

3.1.1.1 I-75 Mainline

I -75 operates under the Federal Highway System and is classified as an Urban Principal Arterial Interstate roadway within the study limits. The functional classification "Interstate" is based on mobility, access functions, physical layout, and official designation. I-75 is a limited access, six to eight lane divided highway designed to accommodate high levels of mobility, long distance travel, higher speed limits and connections to major urban areas. I-75 ranks highest amongst functional classifications, as an interstate further categorized as a Principal Arterial based on the official designation by the Secretary of Transportation and the Dwight D. Eisenhower National System of Interstate and Defense Highways. The posted speed limit for I-75 is 70 mph. *Figure 3.1* identifies the functional classification and speed limits for the I-75 mainline and crossroads within the designated study limits. The Straight-Line Diagrams (SLD) can be found in **Appendix A**.

The existing posted speed limit of 70 mph complies with the design speed criteria for a rural and urban limited access SIS facility per the Florida Design Manual (FDM) Table 201.5.1.

3.1.2 Typical Sections

The existing I-75 typical section consists of three 12 feet wide general purpose (GP) lanes in each direction separated by a varied width grassed median with vegetation as shown in *Figure 3.2*. Within the study corridor, the median width is typically 66 feet within the non-bifurcated segments and is up to 482 feet in the bifurcated segments. The bifurcated and non-bifurcated segments are summarized in *Table 3.1*. The inside and outside shoulders are 12 feet wide with 10 feet paved. Auxiliary (AUX) lanes exist at various locations from SR 951/Collier Blvd to SR 78/Bayshore Road and are depicted in *Figure 3.3*.

County	Milepost Limits	Bifurcated or Non-Bifurcated	Existing Median Width
Lee	18.864-28.597	Non-Bifurcated	Varies (41' - 66')
Lee	16.957-18.864	Bifurcated	Varies (180' - 482')
Lee	7.670-16.957	Non-Bifurcated	Varies (64' - 66')
Lee	2.458-7.670	Bifurcated	Varies (76' - 152')
Lee	0.000-2.458	Non-Bifurcated	66'
Collier	59.850-63.676	Non-Bifurcated	66'
Collier	58.269-59.850	Bifurcated	Varies (79' - 329')
Collier	54.313-58.269	Non-Bifurcated	66'
Collier	50.757-54.313	Bifurcated	Varies (70' - 437')
Collier	50.096-50.757	Non-Bifurcated	Varies (86' - 89')

Table 3.1: Bifurcated and Non-Bifurcated Segments

Figure 3.2: Existing Typical Section – Six Lane Divided Lee County, MP 24.335 to MP 25.730; MP 26.227 to MP 28.000

Figure 3.3: Existing Typical Section – Eight Lane Divided Collier County, MP 50.096 to MP 63.676; Lee County MP 0.000 to 24.335; MP 25.730 to MP 26.227; MP 28.000 to MP 28.597

3.1.3 Right of Way

I-75 (SR 93) is a state roadway managed and maintained by the Florida Department of Transportation. Existing right of way for this transportation facility ranges from 300 feet to 400 feet within the study limits. The minimum right of way widths transitions in areas along the corridor within the study area. Within the study limits widths widen at interchange locations, natural feature locations, horizontal curves, and where the travel lanes follow independent alignments. *Table 3.2* summarizes the existing minimum right of way widths in the study limits provided from the Surveying and Mapping Office.

County	Milepost Limits	Limits	Right of Way Width (feet)*
Lee	26.0 to 28.3	North of SR 80 to South of SR 78 / Bayshore Rd	335'
Lee	24.1 to 26.0	North of Luckett Rd to South of SR 80	370'
Lee	22.6 to 24.1	North of SR 82 / Dr Martin Luther King Jr Blvd to South of Luckett Rd	320'
Lee	21.0 to 22.6	North of SR 884 / Colonial Blvd to South of SR 82 / Dr Martin Luther King Jr Blvd	395'
Lee	16.4 to 21.0	North of SR 876 / Daniels Pkwy to South of SR 884 / Colonial Blvd	300'
Lee	8.3 to 16.4	North of SR 850 / Corkscrew Rd to South of SR 876 / Daniels Pkwy	310'
Lee	2.0 to 8.3	North of East Terry St to South of SR 850 / Corkscrew Rd	300'
Lee	1.0 to 2.0	North of SR 865 / Bonita Beach Rd to South of East Terry St	315'
Collier/Lee	60.5 to 1.0	North of SR 846 / Immokalee Rd to South of SR 865 / Bonita Beach Rd	310'
Collier	58.5 to 60.5	North of SR 862 / Vanderbilt Beach Rd to South of SR 846 / Immokalee Rd	330'
Collier	56.1 to 58.5	North of Pine Ridge Rd to South of SR 862 / Vanderbilt Beach Rd	400'
Collier	53.7 to 56.1	North of Golden Gate Pkwy to South of Pine Ridge Rd	320'
Collier	50.3 to 53.7	North of SR 951 / Collier Blvd to South of Golden Gate Pkwy	345'

Table 3.2: Right of Way Widths

*Excludes interchanges

3.1.4 Horizontal Alignment

In Collier County, the horizontal alignment of I-75 runs in an east-west direction from SR 951/Collier Boulevard to Golden Gate Parkway and in a north-south direction from Golden Gate Parkway to Lee County Line (MP 63.6). In Lee County, the horizontal alignment continues in a north-south direction from MP 63.6 to SR 78/Bayshore Road. There are 21 horizontal curves within the study limits as shown in *Figure 3.4* and summarized in *Table 3.3*. Generally, the horizontal curves are centered between the northbound and southbound roadways in non-bifurcated segments and are located on the inside edge of travel way for the northbound and southbound roadways in bifurcated segments. FDM Table 211.7.1 states that for a 70-mph design speed, the minimum desired length of a horizontal curve is 1,050 feet with a desired 2,100 feet. Out of the curves identified, it was found that one curve (Curve No. 6 in *Table 3.3*) has a horizontal curve length less than 1,050 feet.

Curve No.	County	I-75 NB, I-75 SB or Center	Location	Point of Intersection Milepost	Radius	Length
1	Lee	I-75 NB	North of SR 80	27	5,729'	3,490'
2	Lee	I-75 NB	South of SR 80	25.6	8,551'	1,335'
3	Lee	I-75 NB	South of Tice St	25.1	7,639'	1,198'
4	Lee	I-75 NB	South of Luckett Rd	24.1	85,516'	1,261'
5	Lee	I-75 NB	North of Immokalee Rd	23.4	5,729'	1,700'
6	Lee	I-75 NB	North of Colonial Blvd	21.8	22,918'	2,999'
7	Lee	I-75 NB	North of Daniels Pkwy	18.3	22,918'	9,271'
8	Lee	I-75 NB	North of Daniels Pkwy	18.3	22,918'	9,271'
9	Lee	I-75 NB	North of Daniels Pkwy	17	11,459'	1,800'
10	Lee	I-75 NB	North of Daniels Pkwy	16.9	11,459'	1,800'
11	Lee	I-75 NB	South of Alico Rd	12.1	5,729'	1,357'
12	Lee	I-75 NB	North of Estero Pkwy	9.9	17,362'	1,225'
13	Lee	I-75 NB	North of E Terry St	7.4	5,729'	1,673'
14	Lee	I-75 NB	North of E Terry St	4.2	5,729'	3,553'
15	Lee	I-75 NB	North of E Terry St	2.5	5,729'	1,673'
16	Lee	I-75 NB	South of Bonita Beach Rd	0.2	5,729'	850'
17	Collier	I-75 NB	North of Immokalee Rd	62.7	5,729'	1,953'
18	Collier	I-75 NB	South of Immokalee Rd	60.3	11,459'	3,659'
19	Collier	I-75 NB	North of Pine Ridge Rd	59.2	7,639'	2,360'
20	Collier	I-75 NB	South of Golden Gate Pkwy	54.1	5,729'	9,145'
21	Collier	I-75 NB	West of SR 951	51.9	11,459'	3,812'

Table 3.3: Horizontal Curves

I-75 NB curves were approximated using horizontal alignment information from the Straight-Line Diagram. Curves that do not meet the FDOT minimum curve length requirement and would require a Design Variation to remain are noted in **red**.

3.1.5 Vertical Alignment

The terrain along I-75 is relatively flat except for all the crossroad and waterway crossings. The longitudinal grades range from 0.0% to 3.0% and the interstate is higher than the property adjacent to the highway within the project limits. The crest and sag vertical curves along I-75 have curve lengths ranging from 630 feet to 2500 feet. *Table 3.4* summarizes the existing vertical alignment information for I-75 through the study area.

The existing vertical alignment of I-75 was evaluated to determine if the existing facility meets current design standards for vertical curvature with a design speed of 70 mph. All vertical curves meet the FDM maximum grade requirement of 3 percent. The FDOT FDM requires a minimum vertical curve length of 800 feet for a sag, 1,000 feet for a crest (open highway - OH), and 1,800 feet for a crest

(within interchange - WI). Out of the 26 identified vertical curves from the as-built plans, there are 8 curves that do not meet the criteria for vertical curve length, as shown in **red text** below. The FDOT FDM requires interstates to have a minimum K value of 206 for sag curves, 506 for new reconstruction crest curves and 312 for resurfacing crest curves. Out of the 26 identified vertical curves from the as-built plans, only 18 curves, as shown in black text, meet the criteria for K value.

County	Vertical Point of Intersection Milepost	Curve Type	Grade In	Grade Out	Existing Vertical Curve Length	Existing K-Value		
	Left and Right Roadway (I-75 NB and SB)							
Lee	28.3	Crest	2.74%	-2.46%	1,500'	288		
Lee	-	Sag	0.00%	2.74%	800'	291		
Lee	-	Sag	-3.00%	0.00%	800'	266		
Lee	26	Crest	2.25%	-3.00%	1,400'	266		
Lee	-	Sag	0.00%	2.25%	800'	355		
Lee	-	Sag	-2.60%	-0.03%	800'	3,003		
Lee	22.6	Crest	2.60%	-2.60%	1,500'	288		
Lee	-	Sag	0.10%	2.60%	800'	296		
Lee	-	Sag	-2.60%	0.00%	800'	307		
Lee	21	Crest	2.60%	-2.60%	1,500'	288		
Lee	-	Sag	0.08%	2.60%	800'	298		
Lee	-	Sag	-2.50%	0.00%	880'	352		
Lee	12.6	Crest	2.50%	-2.50%	2,500'	500		
Lee	-	Sag	0.01%	2.50%	900'	358		
Lee	-	Sag	-2.90%	0.00%	800'	275		
Lee	8.3	Crest	2.90%	-2.90%	1,600'	275		
Lee	-	Sag	0.00%	2.90%	800'	275		
Collier	-	Sag	-3.00%	0.00%	630'	210		
Collier	60.5	Crest	3.00%	-3.00%	1,600'	266		
Collier	-	Sag	0.00%	3.00%	680'	226		
Collier	-	Sag	-2.00%	0.01%	900'	447		
Collier	58.5	Crest	2.00%	-2.00%	2,060'	515		
Collier	-	Sag	0.00%	2.00%	920'	459		
Collier	-	Sag	-2.00%	0.00%	1,100'	548		
Collier	56.1	Crest	2.00%	-2.00%	1,800'	450		
Collier	-	Sag	0.02%	2.00%	1,150'	570		

Table 3.4: Vertical Curves

I-75 curves were approximated using vertical alignment information from As-Built plans.

Curves that do not meet the FDOT minimum curve length requirement and would require a Design Variation to remain are noted in red.

3.1.6 Interchanges

There are 13 interchanges within the study limits as summarized in *Table 3.5* and shown in *Figure 3.5*. There are several planned interchange modifications that will be in place by either the opening year (2025) or design year (2045) and are noted with <u>blue text</u> in the table.

County	MP	Exit #	Interchange	Existing Interchange Type (2022)	Opening Year Interchange Type (2025)	Design Year Interchange Type (2045)
Lee	28.3	143	I-75 / SR 78	Diamond	Diamond	Diamond
Lee	26	141	I-75 / SR 80	Diamond	Diamond	Diamond
Lee	24.1	139	I-75 / Luckett Rd	Diamond	Diamond	Diamond
Lee	22.6	138	I-75 / SR 82	Diamond	Diamond	Diamond
Lee	21	136	I-75 / Colonial Blvd	Diamond	Diamond	Diamond
Lee	16.4	131	I-75 / Daniels Pkwy	Diamond	Diamond	Diamond
Lee	12.6	128	I-75 / Alico Rd	2-Quadrant Cloverleaf	2-Quadrant Cloverleaf	2-Quadrant Cloverleaf
Lee	8.3	123	I-75 / Corkscrew Rd	Diamond	Diamond	Diamond
Lee	1	116	I-75 / Bonita Beach Rd	Diamond	Diamond	Diamond
Collier	60.5	111	I-75 / Immokalee Rd	Diamond	Diamond	Diamond
Collier	56.1	107	I-75 / Pine Ridge Rd	Diamond	Diamond	Diamond
Collier	53.7	105	I-75 / Golden Gate Pkwy	Diamond	Diamond	Diamond
Collier	50.3	101	I-75 / SR 951	Diamond	Diamond	Diamond

Table 3.5: Interchanges

3.1.7 Drainage

Drainage along I-75 is accomplished by collecting stormwater runoff in open roadside ditches, which are present for the length of the project. The original four-lane I-75 pavement received no treatment or attenuation. Several I-75 interchanges and ramps have since been designed and constructed, and those improvements have generally been treated and attenuated within on-site ponds and linear swales and permitted through the South Florida Water Management District (SFWMD). In addition, the four-lane mainline was expanded to the existing six-lane facility, which was treated, attenuated, floodplain compensation provided, and permitted through SFWMD with the FPID 420655-1-52-01 "IROX" project. The IROX project utilized on-site linear ponds with some off-site stormwater ponds and floodplain compensation facilities. In general, the right of way for the "off-site" stormwater ponds that were utilized in the IROX project were originally obtained to provide stormwater treatment and attenuation for an "ultimate" I-75 facility. Design projects along I-75 identified offsite ponds that would be necessary for treatment, attenuation, and pollutant loading reductions for an "ultimate" I-75 facility in Collier and Lee County. Many of those design projects were permitted and R/W was obtained for the stormwater management facilities, but those projects were not constructed.

The SFWMD Arch Hydro Enhanced Database (AHED) of the National Hydrography Database (NHD) shows that I-75 in Collier County and Lee County is within the Henderson-Belle Meade, Golden Gate Main, Cocohatchee, Estero Bay, Tidal South, Caloosahatchee Estuary and Tidal North watersheds. East of the I-75/SR 951 interchange, I-75 is within the Henderson-Belle Meade watershed, which drains south through Henderson Creek to the Coastal Basins watershed. West of the I-75/SR 951 interchange up to Vanderbilt Beach Road and the southeast corner of the I-75 Immokalee Road interchange is within the Golden Gate Main watershed, which drains south through the I-75 Canal and then west to the Gordon River and into the Coastal Basins watershed. I-75 from Immokalee Road up to the Lee County line is within the Cocohatchee watershed, which drains west to the Cocohatchee River and the Coastal Basins watershed. From the Lee County line north to SR 82 is within the Estero Bay watershed. The Estero Bay watershed drains west through the Oak Creek, Imperial River, Leitner Creek, Estero River, and Six Mile Cypress to the Estero Bay water body watershed. I-75 from SR 82 to the Caloosahatchee River is within the Tidal South watershed that drains west through Billy Creek to the Caloosahatchee Estuary. I-75 from north of the Caloosahatchee River to the SR 78 interchange is within the Tidal North watershed that drains south to the Caloosahatchee Estuary by Popash Creek. Refer to Figure 3.6 for a watershed map surrounding the project limits.

There are 99 cross drains within the corridor limits of this project, with 34 cross drains in Collier County and 65 cross drains in Lee County that convey off-site and onsite runoff and ensure pre-development drainage patterns are maintained. *Table 3.6* lists cross drain locations, pipe material, size, and type of cross drain.

County	Milepost	Туре	Size	Full or Half Crossing
Lee	28.7	CC	Dbl 30" LT & RT	Full
Lee	25.9	CC	18"	Full
Lee	25.8	CC	24"	Full
Lee	25.3	CBC	7'x4'	Full
Lee	25	CBC	5'x4'	Full
Lee	24.6	CC	60"	Full
Lee	24.3	CC	18"	Full
Lee	23.9	CC	18"	Full
Lee	23.7	CC	60"	Full
Lee	23.2	CC	48"	Full
Lee	22.9	CBC	7'x3'	Full
Lee	22.1	CC	36"	Full
Lee	21.7	CC	15" LT - 36" RT	Full
Lee	21.5	CC	36"	Full
Lee	20.8	CC	36"	Half
Lee	20.6	CC	28" LT & RT	Full
Lee	20.2	CC	48"	Full
Lee	19.9	CC	24"	Full
Lee	19.8	CC	24"	Full
Lee	19.6	CC	24"	Full
Lee	19.5	CC	24"	Full
Lee	19.4	CC	30"	Full
Lee	19.1	CBC	Dbl 8'x4'	Full
Lee	18.5	CBC	6'x4' LT & RT	Full
Lee	18.1	CC	30"	Half
Lee	17.8	CBC	6'x4' LT & RT	Full
Lee	17.5	CC	30"	Half
Lee	17.4	CC	30"	Half
Lee	17	CBC	6'x4' LT & RT	Full
Lee	15.9	CC	30"	Full
Lee	15.4	CC	30"	Full

Table 3.6: Existing Cross Drains

County	Milepost	Туре	Size	Full or Half Crossing
Lee	15.1	CBC	8'x3'	Full
Lee	14.7	CBC	8'x3'	Full
Lee	14.4	CC	30"	Full
Lee	13.4	CC	30"	Full
Lee	13	CC	30"	Full
Lee	12.1	CC	30"	Full
Lee	11.7	CC	30" LT & RT	Full
Lee	11.4	CBC	8'x8' LT & RT	Full
Lee	11.1	CC	30"	Full
Lee	10.5	CC	30"	Half
Lee	10.4	CC	30" LT & RT	Full
Lee	8.1	CBC	10'x6'	Full
Lee	7.9	CC	42" LT & RT	Full
Lee	7.2	CBC	10'x6'	Half
Lee	7.2	CBC	10'x6'	Half
Lee	7	CC	30" LT & RT	Full
Lee	6.6	CC	30" LT & RT	Full
Lee	6.4	CBC	Dbl 9'x8' LT & RT	Full
Lee	6	CC	Dbl 30" LT & RT	Full
Lee	4.2	CBC	10'x8' LT & RT	Full
Lee	3.2	CBC	8'x7' LT & RT	Full
Lee	3.1	CC	54"	Full
Lee	2.9	CBC	12'x8'	Half
Lee	2.7	CC	48"	Half
Lee	2.6	CC	42" LT & RT	Full
Lee	2.1	CBC	6'x4'	Full
Lee	1.1	CC	42"	Full
Lee	0.8	CC	36"	Full
Lee	0.5	CC	Dbl 30"	Full
Lee	0.3	CC	Dbl 30"	Full
Lee	0.2	CBC	9'x7'	Full
Collier	63.3	CBC	10'x8' LT & RT	Full
Collier	62.6	CC	30"	Full

County	Milepost	Туре	Size	Full or Half Crossing
Collier	62	CC	30"	Full
Collier	61.7	CC	42"	Full
Collier	61.5	CC	12'x10'	Full
Collier	61.2	CBC	30"	Full
Collier	60.2	CC	Dbl 24"	Half
Collier	59.3	CC	24"	Half
Collier	58.5	CBC	7'x6' LT & RT	Full
Collier	58.1	CC	60"	Full
Collier	58	CC	72"	Full
Collier	57.7	CC	60" LT & RT	Full
Collier	57.3	CC	66"	Full
Collier	56.9	CC	Dbl 54"	Full
Collier	56.7	CC	Dbl 60" LT & RT	Full
Collier	55.9	CC	Dbl 66" LT & RT	Full
Collier	55.5	CC	66" LT & RT	Full
Collier	55.3	CC	48"	Full
Collier	55.1	CBC	5'x4' LT & RT	Full
Collier	54.6	CBC	10'x5'	Full
Collier	54.3	CC	48"	Full
Collier	53.8	CC	60" LT & RT	Full
Collier	54.6	CBC	10'x5'	Full
Collier	54.3	CC	48"	Full
Collier	53.8	CC	60" LT & RT	Full
Collier	53	CC	Dbl 36" LT & RT	Full
Collier	52.5	CBC	7'x5' LT & RT	Full
Collier	52.4	CC	60" LT - 48" RT	Full
Collier	52.1	CBC	7'x5' LT & RT	Full
Collier	51.8	CC	48" LT - 36" RT	Full
Collier	51.5	CBC	9'x5' LT & RT	Full
Collier	51.2	CC	36" LT & RT	Full
Collier	51	CBC	7'x4'	Full
Collier	50.8	CC	15"x127'	Half
Collier	50.6	CC	15"x121' LT & 15"x75' BT	Full

County	Milepost	Туре	Size	Full or Half Crossing
Collier	50.2	сс	15"x121' LT & 15"x75' RT	Full
Collier	50.1	CBC	7'x4'	Full

CC – concrete culvert; CBC – concrete box culvert; Dbl - double; LT - left; RT – right

There are 80 existing permitted facilities within the corridor limits, including 71 stormwater treatment pond sites and 9 floodplain mitigation sites. The existing stormwater management inventory includes three pond site categories for alignment considerations; (1) Offsite Ponds for stand-alone site parcels that are outside of the corridor's primary right of way, (2) Roadside Linear Ponds that are typically uniform width roadside ditch configurations, and (3) Median or Infield ponds including larger linear ponds within bifurcated medians and curvilinear ponds within interchange infields. The floodplain mitigation sites identified along the corridor are located onsite within bifurcated medians or outside border widths. All existing stormwater management sites and information were taken from available FDOT as-built drawings. It is believed there are additional projects with Stormwater Management Facilities (SMF) and joint-use ponds, which were not identified along the corridor limits. The existing stormwater management sites are summarized in *Table 3.7*.

I-75 (SR 93) CORRIDOR					EXISTING STORMWATER MANAGEMENT INVENTORY			
FPID	From Milepost	To Milepost	Side	Offsite Pond	Roadside Linear Pond	Median or Infield Pond	Floodplain Mitigation Onsite	
			COLLIER CO	UNTY				
406313-4-52-01	50.747	50.934	RT		Х			
406313-4-52-01	50.958	51.100	RT		Х			
406313-4-52-01	51.119	51.187	MED			Х		
406313-4-52-01	51.201	51.315	MED			Х		
406313-4-52-01	51.231	51.436	MED - LT				Х	
406313-4-52-01	51.321	51.444	MED - RT			Х		
406313-4-52-01	51.455	51.736	MED - LT				Х	
406313-4-52-01	51.459	51.592	MED - RT			х		
406313-4-52-01	51.603	51.742	MED - RT			Х		
406313-4-52-01	51.754	51.863	MED - RT			Х		
406313-4-52-01	51.754	51.863	MED - LT			Х		
406313-4-52-01	51.863	52.014	MED - RT			X		
406313-4-52-01	51.863	52.014	MED - LT			Х		
406313-4-52-01	52.029	52.188	MED - RT			Х		

 Table 3.7: Existing Stormwater Management Sites

l-	I-75 (SR 93) CORRIDOR			EXISTING STORMWATER MANAGEMENT INVENTORY			
FPID	From Milepost	To Milepost	Side	Offsite Pond	Roadside Linear Pond	Median or Infield Pond	Floodplain Mitigation Onsite
406313-4-52-01	52.029	52.188	MED - LT			х	
406313-4-52-01	52.197	52.399	MED - RT			Х	
406313-4-52-01	52.197	52.399	MED - LT			Х	
406313-4-52-01	52.465	52.661	RT		Х		
406313-4-52-01	52.465	52.642	MED			Х	
406313-4-52-01	52.654	52.710	MED - LT				Х
406313-4-52-01	52.654	52.716	MED - RT				Х
406313-4-52-01	52.717	52.981	MED - LT			Х	
406313-4-52-01	52.736	52.970	MED - RT				Х
406313-4-52-01	52.996	53.121	MED - LT			Х	
406313-4-52-01	52.998	53.119	MED - RT				Х
406313-4-52-01	53.129	53.202	MED - RT				Х
406313-4-52-01	53.133	53.238	MED - LT			х	
406313-4-52-02	53.269	53.344	RT		Х		
406313-4-52-01	53.277	53.318	MED - RT				Х
406313-4-52-01	53.305	53.570	MED - LT			Х	
406313-4-52-01	53.404	53.699	MED - RT				Х
406313-4-52-01	53.428	53.606	RT		Х		
406313-4-52-01	53.576	53.755	MED - LT			Х	
406313-4-52-01	53.768	53.923	MED - LT			Х	
406313-4-52-01	53.774	53.811	MED - RT			Х	
420655-1-52-01	54.103	54.176	LT	Х			
420655-1-52-01	55.013	55.044	LT	Х			
420655-1-52-01	57.352	57.465	LT	Х			
420655-1-52-01	58.886	59.066	RT	х			
420655-1-52-01	60.203	60.401	LT	х			
420655-1-52-01	61.280	61.443	RT	х			
420655-1-52-01	62.503	62.560	LT	х			
COLLIER (BACK)	63.504		·	COLLIER -	LEE COUNTY L	INE	

I-75 (SR 93) CORRIDOR			EXISTING STORMWATER MANAGEMENT INVENTORY				
FPID	From Milepost	To Milepost	Side	Offsite Pond	Roadside Linear Pond	Median or Infield Pond	Floodplain Mitigation Onsite
LEE (AHEAD)	0.000						
			LEE COUN	ITY			
416649-2-52-01	11.433	11.770	RT		х		
416649-2-52-01	11.789	11.922	RT		х		
416649-2-52-01	12.168	12.357	RT	х			
416649-2-52-01	12.130	12.452	RT		Х		
416649-2-52-01	12.395	12.537	LT			Х	
416649-2-52-01	12.556	12.660	RT			Х	
416649-2-52-01	12.452	12.660	RT			Х	
416649-2-52-01	12.708	12.812	RT			Х	
416649-2-52-01	12.708	12.926	RT			Х	
416649-2-52-01	13.020	12.982	RT			Х	
416649-2-52-01	12.831	13.115	RT		Х		
416649-2-52-01	13.172	13.854	LT		Х		
416649-2-52-01	12.963	13.873	LT		Х		
416649-2-52-01	13.285	13.719	RT		Х		
416649-2-52-01	13.162	13.873	RT		Х		
416649-2-52-01	13.910	14.649	LT		Х		
416649-2-52-01	13.920	14.516	RT		Х		
416649-2-52-01	13.920	13.956	RT			Х	
416649-2-52-01	13.996	14.109	RT			Х	
416649-2-52-01	13.996	14.100	LT			Х	
416649-2-52-01	14.090	14.176	LT			Х	
416649-2-52-01	14.176	14.649	LT		Х		
416649-2-52-01	14.609	14.791	RT	х			
416649-2-52-01	14.687	15.121	LT		Х		
416649-2-52-01	15.123	15.426	RT		Х		
416649-2-52-01	15.217	15.426	LT	Х			
416649-2-52-01	15.426	15.804	RT		Х		

I-	EXISTING STORMWATER MANAGEMENT INVENTORY						
FPID	From Milepost	To Milepost	Side	Offsite Pond	Roadside Linear Pond	Median or Infield Pond	Floodplain Mitigation Onsite
411036-1-52-01	19.697	21.034	RT			Х	
411037-1-52-01	22.483	22.596	RT			Х	
411037-1-52-01	22.653	22.805	RT			Х	
413066-1-52-01	26.012	26.163	LT	х			
413066-1-52-01	26.201	26.268	LT	х			
413066-1-52-01	27.319	27.574	RT		Х		
413066-1-52-01	27.319	27.574	LT		х		
413066-1-52-01	27.603	27.754	RT		Х		
413066-1-52-01	27.603	27.754	LT		Х		
413066-1-52-01	27.940	28.092	RT		х		
413066-1-52-01	27.940	28.092	LT		Х		

The Federal Emergency Management Agency (FEMA) provides Flood Insurance Rate Maps (FIRMs) to estimate a community's risk of flooding. FEMA provides ongoing coordination with regulatory agencies and municipalities for establishing FIRM coverage of floodplain boundaries and base flood elevations. There are 23 FIRM panels defining floodplain characteristics of the I-75 South Corridor limits, including eight FIRM panels in Collier County from east of SR 951/Collier Boulevard to the Lee County Line, and 15 FIRM panels in Lee County from the county line to SR 78. The FIRMs are a result of coordination between FEMA and the South Florida Water Management District (SWFWMD) in concert with Collier and Lee Counties. *Table 3.8* below provides a summary of FEMA Flood Insurance Rate Maps (FIRM) coverage for the I-75 corridor study limits.

Table 3.8: Summary of FEMA Flood Insurance Rate Maps (FIRM)

I-75 (SR 93) CORRIDOR							
FIRM PANEL NO.	FROM	то					
COLLIER COUNTY							
12021C0416H (EFFECTIVE 05/16/2012)	1 MILE EAST OF COLLIER BLVD.	COLLIER BLVD. (CR 951)					
12021C0412H (EFFECTIVE 05/16/2012)	COLLIER BLVD. (CR 951)	SANTA BARBARA BLVD.					
12021C0411H (EFFECTIVE 05/16/2012)	SANTA BARBARA BLVD	0.9 MILES NORTH OF GOLDEN GATE PKWY. (CR 886)					

I-75 (SR 93) CORRIDOR							
FIRM PANEL NO.	FROM	то					
12021C0403H (EFFECTIVE 05/16/2012)	0.9 MILES NORTH OF GOLDEN GATE PKWY. (CR 886)	0.5 MILES NORTH OF PINE RIDGE RD. (CR 896)					
12021C0401H (EFFECTIVE 05/16/2012)	0.5 MILES NORTH OF PINE RIDGE RD. (CR 896)	0.4 MILES NORTH OF VANDERBILT BEACH RD. (CR 862)					
12021C0213H (EFFECTIVE 05/16/2012)	0.4 MILES NORTH OF VANDERBILT BEACH RD. (CR 862)	0.6 MILES NORTH OF IMMOKALEE RD. (CR 846)					
12021C0211H (EFFECTIVE 05/16/2012)	0.6 MILES NORTH OF IMMOKALEE RD. (CR 846)	0.3 MILES SOUTH OF COLLIER – LEE CO. LINE					
12021C0205H (EFFECTIVE 05/16/2012)	1.3 MILES SOUTH OF COLLIER – LEE CO. LINE	COLLIER - LEE CO. LINE					
	LEE COUNTY						
12071C0678F (EFFECTIVE 08/28/2008)	COLLIER - LEE CO. LINE	BONITA BEACH ROAD SE (CR 865)					
12071C0659F (EFFECTIVE 08/28/2008)	BONITA BEACH ROAD SE (CR 865)	0.1 MILES SOUTH OF E TERRY ST.					
12071C0657F (EFFECTIVE 08/28/2008)	0.1 MILES SOUTH OF E TERRY ST.	4 MILES SOUTH OF CORKSCREW RD. (CR 850)					
12071C0594G (EFFECTIVE 12/07/2018)	4 MILES SOUTH OF CORKSCREW RD. (CR 850)	1.8 MILES SOUTH OF CORKSCREW RD. (CR 850)					
12071C0592G (EFFECTIVE 12/07/2018)	1.8 MILES SOUTH OF CORKSCREW RD. (CR 850)	0.4 MILES NORTH OF CORKSCREW RD. (CR 850)					
12071C0584F (EFFECTIVE 08/28/2008)	0.4 MILES NORTH OF CORKSCREW RD. (CR 850)	0.5 MILES SOUTH OF ESTERO PKWY.					
12071C0583F (EFFECTIVE 08/28/2008)	0.5 MILES SOUTH OF ESTERO PKWY.	1.7 MILES SOUTH OF ALICO RD.					
12071C0581F (EFFECTIVE 08/28/2008)	1.7 MILES SOUTH OF ALICO RD.	0.5 MILES NORTH OF ALICO RD.					
12071C0445F (NOT PRINTED)	0.5 MILES NORTH OF ALICO RD.	1 MILE NORTH OF DANIELS PKWY. (CR 876)					
12071C0433G (EFFECTIVE 12/07/2018)	1 MILE NORTH OF DANIELS PKWY. (CR 876)	1.4 MILES SOUTH OF COLONIAL BLVD. (CR 884)					
12071C0431G (EFFECTIVE 12/07/2018)	1.4 MILES SOUTH OF COLONIAL BLVD. (CR 884)	0.9 MILES NORTH OF COLONIAL BLVD.					
12071C0295G (EFFECTIVE 12/07/2018)	0.9 MILES NORTH OF COLONIAL BLVD.	LUCKETT RD.					
12071C0291F (EFFECTIVE 08/28/2008)	LUCKETT RD.	0.2 MILES NORTH OF PALM BEACH BLVD. (SR 80)					

I-75 (SR 93) CORRIDOR							
FIRM PANEL NO.	FROM	то					
12071C0283F (EFFECTIVE	0.2 MILES NORTH OF PALM BEACH	0.1 MILES NORTHWEST OF					
08/28/2008)	BLVD. (SR 80)	BAYSHORE RD. (SR 78)					
12071C0279F (EFFECTIVE	0.1 MILES NORTHWEST OF	0.3 MILES NORTHWEST OF					
08/28/2008)	BAYSHORE RD. (SR 78)	BAYSHORE RD. (SR 78)					

3.1.8 Lighting

Lighting is present along I-75 at every interchange within the Master Plan study area. Outside of the interchanges, lighting is largely absent except at overpasses. The lighting along the interchanges generally starts around 1000 ft before the off-ramp gore and ends around 300 feet before the on-ramp gore. However, the exact beginning and ending locations vary by interchanges. Usually, four or five High mast light poles are used at one interchange, and the conventional lighting on the cross streets may provide some illumination on I-75 as well. Most of the interchanges use high mast lighting, while the Golden Gate Parkway interchange uses conventional lighting. Furthermore, lighting is present along the auxiliary lanes between the Alico Road and Terminal Access Road interchanges, including both conventional and high mast lighting. Locations where lighting is present along I-75 are summarized in *Table 3.9*.

Two types of lighting are utilized on I-75: standard luminaries and high mast luminaries. Standard luminaries are conventional lighting installed on shoulders, while high mast luminaries are lighting with high mast poles that are usually installed at interchanges because they can illuminate a larger area than conventional lighting.

Overpasses at Santa Barbara Boulevard, SR 862, and Estero Parkway use conventional lighting, and segments of I-75 may be illuminated by the lighting on overpasses. However, no underdeck bridge lightings are installed under the bridges of overpasses.

All the lighting information documented in *Table 3.9* is collected from FDOT Video Log Viewer¹. The video frames for Roadway ID 03175000 were taken on 10/11/2016, and frames for Roadway ID 12075000 were taken on October 11, 2016.

Direction	Roadway ID	Beginning Milepost	Ending Milepost	Number of Lights	Segment Description	Type of Lighting
Right	03175000	49.856	50.901	8	SR 951 interchange	High Mast Lighting
(Northbound)	03175000	52.386	52.386	N/A	Santa Barbara Overpass	Conventional Lighting

Table 3.9: Lee and Collier Lighting Conditions

¹ https://fdotwp1.dot.state.fl.us/videolog/default.asp

Direction	Roadway ID	Beginning Milepost	Ending Milepost	Number of Lights	Segment Description	Type of Lighting
	03175000	53.236	54.446	36	Golden Gate Pkwy Interchange	Conventional Lighting
	03175000	55.631	56.651	7	Pine Ridge Rd Interchange	High Mast Lighting
	03175000	58.421	58.436	N/A	SR 862 Overpass	Conventional Lighting
	03175000	60.336	60.716	4	Immokalee Rd Interchange	High Mast Lighting
	03175000	50.219	50.764	5	SR 951 Interchange	High Mast Lighting
	03175000	52.449	52.469	N/A	Santa Barbara Overpass	Conventional Lighting
Left	03175000	53.551	54.611	30	Golden Gate Pkwy Interchange	Conventional Lighting
(Southbound)	03175000	55.936	56.946	7	Pine Ridge Rd Interchange	High Mast Lighting
	03175000	58.591	58.606	N/A	SR 862 Overpass	Conventional Lighting
	03175000	60.366	60.766	4	Immokalee Rd Interchange	High Mast Lighting
	12075000	0.690	1.205	4	Bonita Beach Rd Interchange	High Mast Lighting
	12075000	8.080	8.645	6	Corkscrew Rd Interchange	High Mast Lighting
	12075000	9.525	9.545	N/A	Estero Pkwy Overpass	Conventional Lighting
	12075000	11.715	15.125	62	Alico Rd Interchange, Terminal Access Interchange, and the auxiliary lanes between	Mixture Of Conventional Lighting and High Mast Lighting
Right (Northbound)	12075000	16.200	16.675	6	Daniels Pkwy Interchange	High Mast Lighting
(**************************************	12075000	20.765	21.135	5	Colonial Blvd Interchange	High Mast Lighting
	12075000	22.325	22.920	5	SR 82 Interchange	High Mast Lighting
	12075000	23.800	24.361	6	Luckett Rd Interchange	High Mast Lighting
	12075000	25.666	26.146	5	SR 80 Interchange	High Mast Lighting
	12075000	27.986	28.596	5	Bayshore Rd Interchange	High Mast Lighting
	12075000	0.893	1.403	4	Bonita Beach Rd Interchange	High Mast Lighting
Left	12075000	8.493	8.878	3	Corkscrew Rd Interchange	High Mast Lighting
(Southbound)	12075000	9.663	9.628	N/A	Estero Pkwy Overpass	Conventional Lighting
	12075000	12.368	14.958	41	Alico Rd Interchange, Terminal Access	Mixture Of Conventional

Direction	Roadway ID	Beginning Milepost	Ending Milepost	Number of Lights	Segment Description	Type of Lighting
					Interchange, and the auxiliary lanes between	Lighting and High Mast Lighting
	12075000	16.203	16.668	3	Daniels Pkwy Interchange	High Mast Lighting
	12075000	20.763	21.318	5	Colonial Blvd Interchange	High Mast Lighting
	12075000	22.313	23.133	6	SR 82 Interchange	High Mast Lighting
	12075000	23.833	24.388	6	Luckett Rd Interchange	High Mast Lighting
	12075000	25.848	26.338	5	SR 80 Interchange	High Mast Lighting
	12075000	28.158	28.603	4	Bayshore Rd Interchange	High Mast Lighting

3.1.9 Utilities

A Sunshine 811 design ticket request covering the study limits found 26 Utility Agency Owners which are listed in *Table 3.10*. Additional data regarding known utilities and locations was compiled from the previous PD&E studies along the corridor and is included in the table for reference; however, the utility information will need to be updated during future project-level PD&E studies.

Utility Agency Owner	Utility Type	Contact	Utilities Identified in Previous PD&E Studies
AT&T Transmission	Communication Lines, Fiber	Steve Hamner (Lee County) 813-888-8300 x201	AT&T Transmission has 3 – 2" Schedule 40 PVC with concrete cap along the north side of Palm Beach Blvd crossing I-75.
Bonita Springs Utilities	Sewer, Water, Wastewater	Dominic Strollo 239-390-4973	
CenturyLink	Fiber, Telephone	Anthony Zawacky 239-263-6216	CenturyLink has a manhole system of 8 – 4" PVC Ducts crossing I-75 along the west side of Collier Blvd. CenturyLink has a BFOC crossing I-75 along the east side of Santa Barbara Blvd. CenturyLink has a BFOC crossing I-75 along the north side of Golden Gate Pkwy. CenturyLink has a BFOC crossing I-75 along the north side of Pine Ridge Rd. CenturyLink has a BFOC crossing I-75 along the north side of Vanderbilt Beach Rd. CenturyLink has a buried cable and fiber crossing along the south side of Immokalee Rd. CenturyLink has 5 – 4" PVC Duct system along Bonita Beach Rd SE crossing I-75. CenturyLink has buried fiber and telephone crossing I-75 along the north side of E Terry St. CenturyLink has a manhole system with 12 – 5" PVC ducts crossing I-75 along the south side of Corkscrew Rd. CenturyLink has buried fiber starting at the south side of Estero Pkwy and running north along the west side of I-

Table 3.10: Utility Agency Owners

Utility Agency Owner	Utility Type	Contact	Utilities Identified in Previous PD&E Studies
			75. CenturyLink has buried fiber crossing I- 75 along the south side of Estero Pkwy.
City of Bonita Springs	Streetlights, Traffic Signals	Matt Feeney (Lee County) 239-949-6241	
City of Fort Myers	Sewer, Street Lights, Water	Nicole Monohan (Lee County) 239-321-7459	
City of Naples	Water	Bob Middleton (Collier County) 239-213-4745	
Collier County Info Technology	Fiber	Joe Oliver (Collier County) 239-252-6205	
Collier County Traffic Ops	Electric, Fiber	Pamela Wilson (Collier County) 239-252-8260	
Collier County Water and Sewer	Sewer, Water	Eric Fey (Collier County) 239-252-1037	
Comcast	CATV	Timothy Green 239-318-1524	
Crown Castle	Fiber	Fiberdig Team 888-632-0931 x2	Crown Castle has fiber crossing I-75 along the south side of Immokalee Rd. Crown Castle has fiber crossing I-75 along the north side of Bonita Beach Rd SE. Crown Castle has fiber crossing I-75 just south of Forest Mere Dr. Crown Castle has fiber along the east side of Imperial Pkwy. Crown Castle has fiber crossing I-75 along the south side of Corkscrew Rd. Crown Castle has fiber crossing I-75 along the north side of Estero Pkwy. Crown Castle has fiber crossing I-75 along the north side of Estero Pkwy. Crown Castle has fiber crossing I-75 along the south side of Alico Rd. Crown Castle has fiber crossing I-75 along the south side of Daniels Pkwy. Crown Castle has fiber crossing I-75 along the north side of Colonial Blvd. Crown Castle has fiber crossing I-75 along the north side of SR 82. Crown Castle has fiber crossing I-75 just south of Corporation Circle. Crown Castle has fiber crossing I-75 along the south side of Palm Beach Blvd. Crown Castle has fiber crossing I-75 along the north side of Bayshore Rd.
FDOT District 1 ITS	Electric, Fiber	Carlos Ogando (Manatee) 239-989-2473 David Burnside (Sarasota) 239-961-3310	
Florida Governmental Utility	Reclaimed Water, Wastewater	Michael Currier (Lee County) 321-246-4642	
Florida Power & Light – Distribution	Electric	Michael Martinez 239-353-6047	
Florida Power & Light – Transmission	Electric	Craig Ledbetter 561-803-7942	
Hotwire Communications	CATV, Fiber, Telephone	Junior Adams 239-784-6821	

Utility Agency Owner Utility Type		Contact	Utilities Identified in Previous PD&E Studies
Lee County - Traffic/Signal	Communication Lines, Electric, Fiber, Street Lights	Mike Padgett (Lee County) 239-533-9500	
Lee County – Utilities Division	Reclaimed Water, Wastewater, Water	Allan Makau (Lee County) 239-533-8598	
Lee County Electric Co-Op Distribution	Electric, Street Lights	Tom Bailey (Lee County) 239-656-2414	
Lee County Electric Co-Op Transmission	Electric	Adrian Rojas (Lee County) 239-656-2158	
Lee Memorial Health System	Fiber	Anthony Pignataro (Lee County) 239-343-1004	
Summit Broadband	Fiber, Telephone	Rob Conger 239-280-6267	
TECO Peoples Gas	Gas	Anthony Baublitz 941-342-4025	TECO Peoples Gas has a 6" PE gas main along the south side of Immokalee Rd crossing under I-75. TECO Peoples Gas has an 8.5" ST High Pressure Gas Main along the south side of Pine Ridge Rd crossing under I-75. TECO Peoples Gas has an 8" ST High Pressure Gas Main along the north side of Golden Gate Pkwy crossing I-75. TECO Peoples Gas has an 8.5" ST High Pressure Gas Main along the west side of Santa Barbara Blvd crossing I-75. TECO Peoples Gas has an 8.5" ST High Pressure Gas Main along the west side of Santa Barbara Blvd crossing I-75. TECO Peoples Gas has an 8.5" ST High Pressure Gas Main along the north side of Bayshore Rd crossing under I-75. TECO Peoples Gas has a 6" PE Gas Main along the south side of Palm Beach Blvd crossing under I-75. TECO Peoples Gas has a 4" PE Gas Main along the south side of SR 82 crossing I-75. TECO Peoples Gas has an 8" ST High Pressure Gas Main along the north side of Colonial Blvd crossing under I-75. TECO Peoples Gas has a 4" PE Gas Main along the south side of SR 82 crossing I-75. TECO Peoples Gas has a 6" ST Gas Main along the north side of Corkscrew Rd crossing I-75. TECO Peoples Gas has a 6" ST Gas Main along the north side of Corkscrew Rd crossing I-75. TECO Peoples Gas has a 6" PE Gas Main along the south side of Bonita Beach Road SE crossing I-75

BFOC – Buried Fiber Optic Cable, DIP – Ductile Iron Pipe; FM – Force Main; FOC – Fiber Optic Cable; HDPE - High Density Polyethylene; PE – Polyethylene, PVC – Polyvinyl Chloride; ST – Steel; WM – Water Main; WWM – Wastewater Main

There are four overhead power line crossings in the study limits with approximate locations by nearest roadway as follows.

- Approximately MP 104.5
- South of Bayshore Road
- South of Tice Street
- North of Alico Road

There is one underground power line crossing in the study limits west of Santa Barbara Boulevard.

3.1.10 Pavement Type and Conditions

The Department reviews the pavement conditions of each state road yearly and measures both the cracking of the roadway surface (Crack) and the ride-ability of the roadway (Ride). A rating between 0 and 10 is assigned for each of these characteristics, and when a roadway falls below six in either category, then the roadway is added to the Department's/District's resurfacing needs list.

The Crack/Ride values in Lee County, reported above six for all segments on I-75. These reviews were conducted in the year 2021, and the results indicate that the roadway surface was not considered deficient and is in good condition. The condition of segments of pavement for 2021-2026 in Lee County is summarized in *Table 3.11*.

Roadway ID	Beginning Milepost	End Milepost	% Trucks	Side	Crack (2021)	Ride (2021)
12075000	0.000	20.010	10.7	RIGHT	7.5	8.6
12075000	0.000	20.919	10.7	LEFT	9.0	8.8
12075000	20.010	22.026	12 5	RIGHT	9.0	8.4
12075000	20.919	23.836	12.5	LEFT	9.0	8.5
42075000	23.836	25.930	13.5	RIGHT	10.0	8.8
12075000				LEFT	9.0	8.8
12075000	25.930	26.538	12.6	RIGHT	10.0	8.4
12075000			13.6	LEFT	10.0	8.5
12075000	22.22	28.200	12.6	RIGHT	10.0	8.6
12075000	27.273	28.390	13.0	LEFT	10.0	8.5
12075000	28 200	34.138	15.6	RIGHT	10.0	8.7
12075000	28.390		13.0	LEFT	9.0	8.8

Table 3.11: Lee County Pavement Condition Survey Values

The Crack/Ride values in Collier County, reported above six for all segments on I-75. These reviews were conducted in the year 2021, and the results indicate that the roadway surface was not considered deficient and is in good condition. The condition of segments of pavement for 2021-2026 in Collier County is summarized in *Table 3.12*.

Roadway ID	Beginning Milepost	Ending Milepost	% Trucks	Side	Crack (2021)	Ride (2021)
03175000	49.560	50.646	11.6		6.5	8.5
03175000	50.646	54.450	12.0	RIGHT	10.0	8.7
03175000	54.450	63.676	8.0		9.0	8.7
03175000	54.669	63.676	8.0		9.0	9.0
03175000	42.012	54.669	10.2		10.0	8.9
03175000	50.646	54.012	12.0		10.0	8.6
03175000	49.407	50.646	11.6		10.0	8.6

Table 3.12: Collier County Pavement Condition Survey Values

The condition of all the sections with the I-75 study corridor have also been rated based on FDOT's Pavement Roughness Index. The roughness index is a measurement of pavement smoothness that follows the FHWA's pavement roughness index ranking criteria. An index between 4.0 and 5.0 indicates very good condition and an index between 3.0 and 4.0 indicates a good pavement condition. Existing pavement conditions for I-75 were reported to be in good condition, with a rating of 4.0 in both counties. Sections in Lee and Collier Counties have been summarized from the Roadway Characteristics Inventory (RCI) data and shown in *Figure 3.7*.

The Department's Materials and Research Laboratory conducts skid tests on each state roadway on a regular basis to measure the pavement's surface resistance. Each year, between 25-35 percent of the state roadways are tested, so that each roadway is tested a minimum of once every four years. Skid Test results are reported as a Skid Number (SN), and if the SN is less than 31, then the roadway's wet weather crashes are reviewed and any necessary remedial actions, such as a skid or resurfacing project, are identified.

The skid numbers within the study corridor range between 33-39 for northbound vehicles and 31-42 for southbound vehicles. The results indicate that the skid resistance for the study corridor is within the satisfactory range. A segment in Lee County reported a SN of 31, for the southbound segment from milepost 23.806 to 26.806. While reporting within the satisfactory range, remedial actions may be necessary soon and be dependent on results from a wet weather crash review.

The most recent skid tests for I-75 within the study limits were conducted on January 7, 2020. The SN for northbound and southbound lanes and programmed work program information have been summarized in *Table 3.13*.

Roadway ID	Beginning Milepost	Ending Milepost	Skid Test Number	Skid No. (NB)	Skid No. (SB)	Programmed Resurfacing FPID	Status (Date)
						422499-1	Completed (2012)
03175000	049.481	050.665	1052812	38		446320-1	Pre-Const. (2020)
						422286-1	Candidate (2020)
03175000	050 665	054 503	1052813	37		422499-1	Completed (2012)
031/3000	050.005	034.303	1052015	57		422286-1	Candidate (2020)
03175000	054.503	063.676	1052814	39		N/A	
						422499-1	Completed (2012)
03175000	049.481	050.665	1052817		42	446320-1	Pre-Const (2020)
						422286-1	Candidate (2020)
02175000			1052916		20	422499-1	Completed (2012)
03175000	050.005	054.505	1052810		59	422286-1	Candidate (2020)
03175000	054.503	063.676	1052815		41	N/A	
12075000	000 000	020.860	1052052	20	26	446344-1	Pre-Const. (2020)
12075000	000.000	020.860	1052953	39	30	449189-1	Candidate (2021)
12075000	020.860	023.806	1052954	36	33	449189-1	Candidate (2021)
12075000	023.806	026.080	1052955	33	31	N/A	
12075000	026.080	026.577	1052956	34	33	N/A	
12075000	027.321	028.414	1052957	36	34	404200-1	Completed (2007)
12075000	028.414	034.138	1052958	35	33	404200-1	Completed (2007)

Table 3.13: Lee and Collier County Skid Numbers

3.1.11 Multimodal Facilities

The *Existing Conditions Traffic Technical Memorandum* describes bicycle, pedestrian, and transit facilities along I-75 and each of the crossroads that interchange with I-75 and should be referred to for detailed descriptions. I-75 enhances the connectivity of multimodal facilities in Lee and Collier County by supporting regional and statewide freight movements. The Seminole Gulf Railway also

supports the movement of freight parallel to I-75 in Lee County. Additionally, the following intermodal centers included in the Bureau of Transportation Statistics' Intermodal Passenger Connectivity Database are in Lee and Collier County.

- Collier County
 - Greyhound Stop
 - Marco Island Marina
 - Red Coach USA Stop
- Lee County
 - Greyhound Station
 - Pilot Travel Center
 - Southwest Florida International Airport
 - Salty Sam's Marina

The study area also includes accommodations for alternative modes of travel for vulnerable users including transit (serviced by LeeTran in Lee County and Collier Area Transit in Collier County), bicycle lanes, and sidewalks. The presence of multimodal accommodations for vulnerable users such as sidewalks, buses, and bike lanes were also reviewed. *Table 3.14* summarizes the accommodations that are available at each interchange, based on which modes passed within 750 feet of the mainline.

Interchange	Sidewalks	Bike Lanes	Transit Routes
Collier Boulevard	Not Present	Present	Present
Golden Gate Parkway	Present	Present	Present
Pine Ridge Rd	Present	Not Present	Present
Immokalee Rd	Present	Not Present	Present
Bonita Beach Rd	Present	Partially Present	Present
Corkscrew Rd	Present	Present	Present
Alico Rd	Present	Present	Present
Terminal Access Rd	Not Present	Not Present	Not Present
Daniels Pkwy	Present	Present	Present
Colonial Blvd	Present	Not Present	Present
Dr MLK Jr Blvd	Present	Present	Present
Luckett Rd	Not Present	Not Present	Not Present
Palm Beach Blvd	Present	Not Present	Present
Bayshore Rd	Not Present	Not Present	Not Present

Table 3.14: Summary of Vulnerable User Accommodations by Interchange

At the Collier Boulevard (SR 951) interchange, there is a Red Coach USA Bus Stop and a Greyhound Bus Stop less than half a mile south of the interchange. At the Palm Beach Boulevard (SR 80) interchange, there is a Greyhound Bus Station approximately five miles west of I-75. These long-distance transit provider stops are all accessible via local transit. An overview of vulnerable user accommodations for Lee and Collier Counties is shown in *Figure 3.8*.

Truck volumes along the I-75 corridor range from approximately 3,000 to 13,000 annual average daily truck volumes. The largest truck volumes (greater than 7,000 vehicles) occur from Golden Gate Parkway to the north end of the project corridor.

In Collier County, truck volumes along the I-75 corridor range from approximately 3,000 to 9,000 daily trucks, while the ramp segments at each interchange experience fewer than 1,500 trucks per day. From the Collier Boulevard interchange south to Marco Island Marina, Collier Boulevard experiences approximately 2,000 trucks per day. The Marco Island Marina is noted in the Bureau of Transportation Statistics Intermodal Passenger Connectivity Database as a ferry terminal. North of the Immokalee Road interchange, there is a weigh-in-motion location for trucks.

Truck volumes in Lee County are higher than in Collier County, ranging from nearly 8,000 to nearly 13,000 trucks per day. The proximity of intermodal centers such as the Southwest Florida International Airport may be influencing the increased truck volume. Terminal Access Road experiences nearly 4,000 trucks daily leading up to the airport.

Furthermore, truck volume along US 41 parallel to the Seminole Gulf Railway is largely more than 1,500 daily trucks. Even though most interchanges experience truck volumes of less than 1,500 daily trucks on each ramp, the northbound off ramps and northbound on ramps at the Bayshore Road, Daniels Parkway, and Palm Beach Boulevard interchanges experience truck volumes more than 1,500 trucks per day. Both Daniels Parkway and Palm Beach Blvd carry a similar number of trucks all the way to US 41.

There is a travel plaza/truck stop located in the southwest corner of the Luckett Road interchange. An overview of the freight activity and facilities is shown in *Figure 3.9*.

Figure 3.8: Lee County Vulnerable User Accommodations

3.1.12 Railroads

The closest railroad crossing to any of the I-75 interchanges is near Tressel Road on Bayshore Road (SR 78), approximately 0.75 miles to the west of the interchange. The Seminole Gulf Railway runs north-south from North Naples to Arcadia via Punta Gorda. This railway provides traditional freight and logistics transportation as well as a 20-mile dinner theater entertainment route from Colonial Station to Tucker's Grade. This railway is located west of the I-75 corridor and runs parallel and adjacent to I-75 from north of Bayshore Road (SR 78) in North Fort Myers to south of Tuckers Grade near Punta Gorda. Within this segment of the project corridor, the distance between the railway and I-75 varies from approximately 100 to 1,500 feet.

3.1.13 Signage

Existing signs within the study corridor vary in reflective intensities, lighting, size, and material type based on specific signing needs. Signs provided on I-75 mainline, ramps, interchanges and local roadways include the following:

- Regulatory Signs
- Warning Signs and object markers
- Guide Signs
- SunPass toll road signs
- Wayfinding signs
- General Information Signs
- General Service Signs
- Specific Service (Logo) Signs
- Tourist-Oriented Directional Signs
- Recreational and Cultural Interest Area Signs
- Emergency Management Signs

Sign placements are determined and influenced by speed, sign visibility, and driver perception. The project segment of I-75 consists of a variety of over lane, cantilever, and post mounted signs. An inventory of the types of mounted highway signs relative to roadside placement is summarized in *Figure 3.10*.

Figure 3.10: Mounted Highway Signs Relative to Roadside Placement

3.1.14 Intelligent Transportation Systems (ITS)

Many advancements have already been made to enhance I-75's Intelligent Transportation System (ITS) and the transportation system infrastructure. Along the study corridor, the accessible ITS components and infrastructure include the following:

- Free Cell Phone Numbers for Reporting Incidents
- Highway Advisory Radio
- Dynamic message Signs
- Permanent Variable Messaging Signs
- Wrong Way Vehicle Detection System
- Microwave Vehicle Detection (MVDS)
- Master Communication Hubs
- Electronic CCTV cameras for Surveillance of Traffic Flow
- Fiber Optic-Based communication
- Available Equipment to Provide In-Vehicle Signing Information
- Power Substations for Power Backup

3.2 Existing Structures

Existing structures along I-75 from south of Collier Boulevard. (SR 951) to north of Bayshore Road (SR 78) include 59 bridges at 34 locations (*Figure 3.11*). *Table 3.15* summarizes the existing bridges located within the project limits including route carried, facility crossed, year originally constructed, and year of widening or rehabilitation, if applicable.

Bridge No.	Description	Bridge Type	Year Built	Year Rehab
120113	NB I-75 over Bayshore Rd.	Steel Girder	1979	2014
120112	SB I-75 over Bayshore Rd.	Steel Girder	1979	2014
120101	NB I-75 over Popash Creek	Reinforced Concrete Slab	1977	2015
120100	SB I-75 over Popash Creek	Reinforced Concrete Slab	1977	2015
120103	I-75 over Tidal Marsh	Prestressed Concrete	1977	2015
120102	I-75 over Tidal Marsh	Prestressed Concrete	1977	2015
120082	I-75 over Tidal Creek	Prestressed Concrete	1977	2015
120081	I-75 over Tidal Creek	Prestressed Concrete	1977	2015
120084	NB I-75 over Caloosahatchee River	Steel Girder	1977	2015
120083	SB I-75 over Caloosahatchee River	Steel Girder	1977	2015
120094	NB I-75 over SR 80 (Palm Beach Blvd.)	Steel Girder	1978	2013
120093	SB I-75 over SR 80 (Palm Beach Blvd.)	Steel Girder	1978	2013
120092	Tice Street over I-75	Prestressed Concrete	1977	
120091	I-75 over Luckett Road	Prestressed Concrete	1978	
120090	I-75 over Luckett Road	Prestressed Concrete	1978	
120123	I-75 NB over SR-82	Prestressed Concrete	1978	2011
120122	I-75 SB over SR-82	Prestressed Concrete	1978	2011
120121	I-75 over Colonial Blvd.	Prestressed Concrete	1978	2011
120120	I-75 over Colonial Blvd.	Prestressed Concrete	1978	2011
120119	I-75 NB over Cypress Slough	Reinforced Concrete Slab	1979	2010
120118	I-75 SB over Cypress Slough	Reinforced Concrete Slab	1979	2010
120107	I-75 NB over Daniels Parkway (SR 865)	Prestressed Concrete	1979	2010
120106	I-75 SB over Daniels Parkway (SR 865)	Prestressed Concrete	1979	2010
120179	Terminal Access over I-75	Prestressed Concrete	2014	-
120105	I-75 SB over Gator Crossing	Prestressed Concrete	1977	2010
120104	I-75 NB over Gator Crossing	Reinforced Concrete Slab	1977	2010
120188	I-75 over Alico Rd.	Reinforced Concrete Slab	2007	-
120187	I-75 over Alico Rd.	Reinforced Concrete Slab	2007	-
120192	I-75 NB over Hicks Crossing	Reinforced Concrete Slab	2009	-

Table 3.15: Existing Bridges Summary

Bridge No.	Description	Bridge Type	Year Built	Year Rehab
120191	I-75 SB over Hicks Crossing	Reinforced Concrete Slab	2009	-
124128	Estero Road over I-75	Steel Girder	2009	-
120153	I-75 over Hicks Crossing Canal	Bridge Culvert	1979	-
120152	I-75 over Corkscrew Canal	Bridge Culvert	1979	-
120141	I-75 over Corkscrew Road.	Prestressed Concrete	1981	2010
120140	I-75 over Corkscrew Road.	Prestressed Concrete	1981	2010
120131	I-75 NB over Monty Creek	Reinforced Concrete Slab	1979	2010
120130	I-75 SB over Monty Creek	Reinforced Concrete Slab	1979	2010
120151	I-75 NB over Stokes Head Slough	Bridge Culvert	1980	-
120149	I-75 SB over Stokes Head Slough	Bridge Culvert	1980	-
120145	Terry St. over I-75	PC PS PT AASHTO V	1981	-
120148	I-75 over Imperial River Relief	Bridge Culvert	1979	-
120146	I-75 over Imperial River	Prestressed Concrete	1980	2010
120144	I-75 over Imperial River	Prestressed Concrete	1980	2010
120147	I-75 NB over Bonita Beach Rd. (CR 865)	Prestressed Concrete	1981	2010
120143	I-75 SB over Bonita Beach Rd. (CR 865)	Prestressed Concrete	1981	2010
030190	I-75 SB over Rock Canal	Reinforced Concrete Slab	1980	2010
030189	I-75 SB over Rock Canal	Reinforced Concrete Slab	1980	2010
030322	I-75 NB over Immokalee Rd. (CR 896)	Steel Girder	2010	-
030321	I-75 SB over Immokalee Rd. (CR 896)	Steel Girder	2010	-
030203	I-75 NB over Vanderbilt Beach Road (CR 862)	Prestressed Concrete	1983	2010
030202	I-75 SB over Vanderbilt Beach Road (CR 862)	Prestressed Concrete	1983	2010
030201	I-75 NB over Pine Ridge Road (CR 896)	Prestressed Concrete	1983	2010
030200	I-75 SB over Pine Ridge Road (CR 896)	Prestressed Concrete	1983	2010
030199	Golden Gate Pkwy. Over I-75	Prestressed Concrete	1984	2006
030197	I-75 SB over Golden Gate Canal	Prestressed Concrete	1984	2005
030198	I-75 NB over Golden Gate Canal	Prestressed Concrete	1984	2005
030205	Santa Barbara Blvd. over I-75	Prestressed Concrete	1984	2005
030195	I-75 NB over Collier Blvd. (SR 951)	Prestressed Concrete	1984	-
030196	I-75 SB over Collier Blvd. (SR 951)	Prestressed Concrete	1984	-

All the existing bridges have been evaluated in accordance with 2020 FDOT and AASHTO criteria. The evaluation of the existing bridges includes an assessment of characteristics such as bridge width, bridge lengths, type of bridge (prestressed concrete beam, steel girder, etc.), vertical and horizontal clearances, and load posting information. The evaluation also includes a condition assessment from the latest bridge inspection reports involving items such as National Bridge Institute (NBI) overall conditions, Health Index, and Sufficiency Ratings.

The "Health Index" is a tool that measures the overall condition of a bridge. The Health Index typically includes 10 to 12 different elements that are evaluated by the Department. A lower Health Index means that more work would be required to improve the bridge to an acceptable condition. A Health Index below 85.0 generally indicates that some repairs are needed; however, it does not necessarily mean the bridge is unsafe. A low Health Index may also indicate that it would be more economical to replace the bridge than to repair it.

The "Sufficiency Rating" is a tool that is used to help determine whether a bridge that is structurally deficient or functionally obsolete should be repaired or replaced. The Sufficiency Rating considers several factors, only about half of which relate to the condition of the bridge itself. A Sufficiency Rating below 80.0 generally indicates that a rehabilitation may be required while a rating below 50.0 indicates that the bridge is eligible for replacement. No bridges within the Master Plan study area were rated as Structurally Deficient.

The term "Structurally Deficient" used in the table below means that there are significant load carrying elements, specifically the deck, superstructure, and substructure, that were rated in poor or worse condition (a code of 4 or less) during the last inspection. The term "Functionally Obsolete" means that a bridge does not meet the current design standards for traffic operations. *Table 3.16* summarizes the existing bridge health data within the project limits.

Bridge No.	Health Index	Sufficiency Rating	Functionally Obsolete	Structurally Deficient	NBI Deck	NBI Super.	NBI Sub.
120113	88	98	Ν	N	7 Good	7 Good	7 Good
120112	85.28	97	Ν	N	7 Good	7 Good	7 Good
120101	90.62	96.4	Ν	N	7 Good	7 Good	7 Good
120100	86.68	94.4	Ν	N	7 Good	7 Good	6 Satisfactory
120103	97.05	96.4	Ν	N	7 Good	7 Good	7 Good
120102	95.48	94.4	Ν	N	7 Good	7 Good	6 Satisfactory
120082	98.6	96.4	N	N	7 Good	7 Good	7 Good
120081	97.76	96.4	N	N	7 Good	7 Good	7 Good
120084	98.3	96.4	N	N	7 Good	7 Good	7 Good
120083	96.1	96.4	N	N	7 Good	7 Good	7 Good
120094	80.16	94	Y	N	7 Good	7 Good	7 Good

Table	3.16:	Existing	Bridges	Health D)ata
	0	E	2.14800	i iouiicii D	

Bridge No.	Health Index	Sufficiency Rating	Functionally Obsolete	Structurally Deficient	NBI Deck	NBI Super.	NBI Sub.
120093	98.35	94	Y	N	7 Good	7 Good	7 Good
120092	98.85	96.1	N	N	7 Good	7 Good	7 Good
120091	99.98	98	N	N	7 Good	7 Good	7 Good
120090	99.97	98	N	N	7 Good	7 Good	7 Good
120123	99.86	94	Y	N	8 Very Good	8 Very Good	8 Very Good
120122	99.99	98	N	N	8 Very Good	8 Very Good	8 Very Good
120121	99.96	96	N	N	7 Good	7 Good	7 Good
120120	99.91	97	N	N	7 Good	7 Good	7 Good
120119	92.47	95.7	N	N	7 Good	7 Good	7 Good
120118	91.06	94.7	N	N	5 FAIR	6 Satisfactory	7 Good
120107	99.96	97	N	N	7 Good	7 Good	7 Good
120106	99.98	98	N	N	7 Good	7 Good	7 Good
120179	98.93	96.6	N	N	8 Very Good	6 Satisfactory	8 Very Good
120105	91	95.5	N	N	7 Good	7 Good	7 Good
120104	93.29	95.5	N	N	7 Good	7 Good	7 Good
120188	99.98	98	N	N	8 Very Good	8 Very Good	8 Very Good
120187	99.95	98	N	N	8 Very Good	8 Very Good	8 Very Good
120192	99.04	95.5	N	N	8 Very Good	8 Very Good	7 Good
120191	98.25	95.5	N	N	8 Very Good	8 Very Good	7 Good
124128	98.74	98.6	N	N	7 Good	7 Good	6 Satisfactory
120153	66.51	83	N	N	N/A	N/A	N/A
120152	34.43	83	N	N	N/A	N/A	N/A
120141	99.63	98	N	N	7 Good	7 Good	8 Very Good
120140	99.71	98	N	N	7 Good	7 Good	8 Very Good
120131	94.66	95.5	N	N	7 Good	7 Good	7 Good
120130	94.6	94.5	Ν	N	7 Good	7 Good	7 Good
120151	42.33	80	Ν	N	N/A	N/A	N/A
120149	35.5	80	N	N	N/A	N/A	N/A
120145	99.81	94.8	N	N	7 Good	7 Good	7 Good
120148	66.99	83	N	N	N/A	N/A	N/A

Bridge No.	Health Index	Sufficiency Rating	Functionally Obsolete	Structurally Deficient	NBI Deck	NBI Super.	NBI Sub.
120146	99.7	95.5	N	N	7 Good	7 Good	7 Good
120144	98.79	95.5	N	N	7 Good	7 Good	7 Good
120147	99.97	91.9	Y	N	7 Good	7 Good	7 Good
120143	99.94	93.9	Y	N	7 Good	7 Good	7 Good
030190	96.65	95.5	N	N	7 Good	7 Good	7 Good
030189	97.63	95.5	N	N	7 Good	7 Good	7 Good
030322	99.11	96	N	N	7 Good	7 Good	8 Very Good
030321	99.97	96	N	N	9 Excellent	9 Excellent	9 Excellent
030203	98.94	93.9	N	N	7 Good	7 Good	7 Good
030202	99.89	90.8	Y	N	7 Good	7 Good	8 Very Good
030201	99.47	94	Y	N	8 Good	7 Good	8 Good
030200	99.73	94	Y	N	7 Good	7 Good	7 Good
030199	94.2	87	N	N	7 Good	7 Good	7 Good
030197	95.73	97	N	N	7 Good	7 Good	7 Good
030198	93.27	97	N	N	7 Good	7 Good	7 Good
030205	99.47	78.6	Ν	N	7 Good	8 Good	8 Good
030195	99.23	94	Y	N	7 Good	7 Good	7 Good
030196	98.43	93	Y	N	7 Good	7 Good	8 Very Good

The minimum horizontal clearance on all the bridges meets the minimum horizontal clearance required per the FDOT Design Manual Section 215 or the piers are properly shielded, except the following, which are not shielded and do not meet the 16.0-foot minimum horizontal clearance:

I-75 over Bayshore Road (Bridge Nos. 120112 & 120113)

The minimum vertical clearance on all the bridges meets the minimum vertical clearance required (16') per the *FDOT Design Manual Section* 260.6, except the following:

- I-75 over Pine Ridge Road (Bridge Nos. 030200 & 030201)
- I-75 over Daniels Parkway (Bridge Nos. 120106 & 120107)
- I-75 over Colonial Boulevard (Bridge Nos. 120120 & 120121)

Further bridge geometric information can be found in *Table 3.17* including structure width and length, number of spans, and maximum span length in addition to the bridge clearances.

Bridge No.	Structure Length (ft)	Structure Width (ft)	Number of Spans	Max Span (ft)	Horiz. Clear. (ft)	Vert. Clear. (ft)
120113	217.25	58.67	3	128.25	15.00 Left	16.40
120112	217.25	58.67	3	128.25	15.00 Left	16.10
120101	182.17	Varies	6	32.00	N/A	N/A
120100	406.02	Varies	13	32.00	N/A	N/A
120103	950.31	70.92	21	45.25	N/A	N/A
120102	950.15	70.92	21	45.25	N/A	N/A
120082	142.44	70.67	3	47.52	N/A	N/A
120081	135.07	70.67	3	45.09	N/A	N/A
120084	3904.23	70.67	62	45.00	N/A	N/A
120083	3857.63	70.67	62	168.71	N/A	N/A
120094	250.96	59.08	3	124.46	4.0 Right	16.00
120093	250.85	59.08	3	124.40	4.0 Right	16.00
120092	265.00	40.00	4	100.92	14.25 Right	16.00
120091	192.50	59.08	3	108.42	16.04 Right	16.15
120090	192.50	59.08	3	108.42	16.04 Right	16.20
120123	265.00	59.08	4	88.00	5.0 Left	16.50
120122	265.00	59.08	4	88.00	5.0 Left	16.80
120121	285.83	66.92	4	103.08	6.3 Left	15.90
120120	285.83	58.92	4	103.08	6.3 Left	16.00
120119	119.95	58.92	4	30.21	N/A	N/A
120118	120.81	58.92	4	30.95	N/A	N/A
120107	240.00	58.92	5	75.67	12.0 Left	15.90
120106	240.00	58.92	4	75.67	12.0 Left	15.90
120179	436.50	85.08	4	134.33	14.0 Right	22.90
120105	145.00	58.92	6	31.00	N/A	N/A
120104	145.00	58.92	5	31.00	N/A	N/A
120188	260.00	210.00	2	135.00	16.0 Left	17.10
120187	260.00	200.00	2	135.00	16.0 Left	17.20
120192	136.00	68.58	4	34.00	N/A	16.00
120191	136.00	68.58	4	34.00	N/A	16.15

Table 3.17: Bridge Geometric Information

Bridge No.	Structure Length (ft)	Structure Width (ft)	Number of Spans	Max Span (ft)	Horiz. Clear. (ft)	Vert. Clear. (ft)
124128	556.25	58.13	2	319.27	29.0 Left	21.00
120153	220.25	21.83	2	10' x 7'	N/A	N/A
120152	220.17	21.83	2	10' x 7'	N/A	N/A
120141	220.08	58.92	2	111.00	6.0 Left	17.10
120140	220.00	58.92	2	111.00	6.0 Left	16.50
120131	118.69	58.92	4	29.86	N/A	N/A
120130	119.35	58.92	4	30.28	N/A	N/A
120151	113.00	26.67	3	8 x 8	N/A	N/A
120149	113.00	26.67	3	8 x 8	N/A	N/A
120145	260.00	42.75	2	130.00	30.0 Left	16.30
120148	270.00	26.67	3	8' x 8'	N/A	N/A
120146	299.78	Varies	6	50.11	N/A	N/A
120144	299.81	Varies	6	50.03	N/A	N/A
120147	182.50	58.92	4	108.50	5.0 Left	16.40
120143	182.50	58.92	3	108.50	5.0 Left	16.40
030190	120.00	Varies	4	30.00	N/A	N/A
030189	120.00	58.67	4	30.00	N/A	N/A
030322	178.00	68.25	3	89.00	4.0 Left	16.70
030321	178.00	68.25	2	89.00	4.0 Left	16.70
030203	169.45	58.92	3	105.53	5.5 Right	16.60
030202	172.17	58.92	3	107.13	5.5 Right	16.60
030201	171.50	58.92	3	106.17	4.0 Right	15.90
030200	171.50	58.92	3	106.17	4.0 Right	15.90
030199	588.00	135.17	7	108.25	20.0 Right	17.26
030197	222.83	58.92	5	44.50	N/A	N/A
030198	234.46	58.92	5	48.84	N/A	N/A
030205	521.67	121.58	7	99.58	30.06 Right	16.50
030195	206.00	42.75	2	103.00	4.0 Left	15.80
030196	206.00	42.75	2	103.00	4.0 Left	15.80

Current FDOT Bridge Load Rating procedures for rehabilitation or widening of existing bridges as defined by Chapter 2 of the FDOT Load Rating Manual requires a Load Resistance Factor Rating factor exceeding 1.0 for HL-93 Inventory and FL120 Permit loads, which is a Load Rating of 36 tons and 120 tons respectively. Alternatively, for Load Factor Rating (LFR) ratings, HS20 – Inventory ratings must exceed 1.0, or 36 tons, and HS20 – Operating ratings must exceed 1.67, or 60 tons. Per FDOT Structures Design Guidelines 7.1.1.A, if any LFR inventory rating factors remain less than 1.0, replacement or strengthening is required unless a Design Variation is approved.

In general, all of the bridges within the project limits are in satisfactory condition. The twin I-75 bridges over SR-82 (Bridge No. 120122 and 120123) have substandard Service III inventory load ratings. However, in accordance with the Structures Design Guidelines Section 7.1.1.C.3, the beam capacity may be established using Strength Limit States. Structures Design Guidelines Section 7.1.1.C.3 states that if the load carrying capacity as determined by Service Limit State yields a rating factor less than 1.0 and the current bridge inspection report shows no signs of either shear or flexural cracking, the capacity may be established by using Strength Limit State. The Tice Street Bridge over I-75 (Bridge No. 120092) is rated per the AASHTO Standard Specifications – Allowable Stress Design.

All bridges have Operating Load ratings greater than 1.0. The Inventory Rating on all the bridges are greater than 1.0 as required in Section 7.1.1 in the *FDOT Structures Design Guidelines*, except for the following:

- Santa Barbara Blvd over I-75 (Bridge No. 030205)
- I-75 NB over Bonita Beach Road (Bridge No. 120147)
- I-75 SB over Bonita Beach Road (Bridge No. 120143)

For a review of the existing bridge load rating summaries per the latest bridge inspection reports see *Table 3.18*.

Bridge No.	Original Design Load	Load Rating Design Vehicle	Load Rating Procedure Used	Inventory Rating (tons)	Operating Rating (tons)	Load Rating Date
120082	HL-93	HL-93	LRFR	39.2	51.5	4/3/2015
120081	HL-93	HL-93	LRFR	41.4	53.3	4/3/2015
120084	HS20	HL-93	LRFR	37.4	44.6	5/29/2015
120083	HS20	HL-93	LRFR	37.4	44.6	5/29/2015
120094	HS20	HS20	LF	45.1	74.9	11/18/2013
120093	HS20	HS20	LF	45.1	74.9	11/18/2013
120092	HS20	HS20	AS	43.0	62.0	10/29/1991
120113	HL-93	HL-93	LRFR	47.9	63.7	3/11/2014
120112	HL-93	HL-93	LRFR	47.9	63.7	3/11/2014
120101	HL-93	HL-93	LRFR	39.2	50.8	4/3/2015
120100	HL-93	HL-93	LRFR	41.8	54.0	4/3/2015

Table	3.18:	Fxisting	Bridges	load	Rating	and	Posting
labic	0.10.	LAISUNG	Dridges	Louu	naung	unu	osung

Bridge No.	Original Design Load	Load Rating Design Vehicle	Load Rating Procedure Used	Inventory Rating (tons)	Operating Rating (tons)	Load Rating Date
120103	HL-93	HL-93	LRFR	37.1	48.6	4/3/2015
120102	HL-93	HL-93	LRFR	37.1	48.6	4/3/2015
120082	HL-93	HL-93	LRFR	39.2	51.5	4/3/2015
120081	HL-93	HL-93	LRFR	41.4	53.3	4/3/2015
120084	HS20	HL-93	LRFR	37.4	44.6	5/29/2015
120083	HS20	HL-93	LRFR	37.4	44.6	5/29/2015
120094	HS20	HS20	LF	45.1	74.9	11/18/2013
120093	HS20	HS20	LF	45.1	74.9	11/18/2013
120092	HS20	HS20	AS	43.0	62.0	10/29/1991
120091	HS20	HS20	LF	40.2	68.0	7/9/2009
120090	HS20	HS20	LF	40.2	68.0	7/9/2009
120123	HL-93	HL-93	LRFR	43.6	56.5	11/1/2009
120122	HL-93	HL-93	LRFR	43.6	56.5	11/1/2009
120121	HS20	HS20	LF	36.4	48.2	9/20/2011
120120	HS20	HS20	LF	37.1	48.2	9/20/2011
120119	HL-93	HL-93	LRFR	37.8	49.0	11/19/2007
120118	HL-93	HL-93	LRFR	37.8	49.0	11/19/2007
120107	HL-93	HS20	LF	42.5	50.4	12/6/2012
120106	HL-93	HS20	LF	41.4	48.6	12/6/2012
120179	HL-93	HL-93	LRFR	39.2	42.8	2/15/2015
120105	HL-93	HL-93	LRFR	38.5	50.0	12/1/2007
120104	HL-93	HL-93	LRFR	38.5	50.0	12/1/2007
120188	HL-93	HL-93	LRFR	37.8	42.8	3/7/2007
120187	HL-93	HL-93	LRFR	37.8	42.8	3/7/2007
120192	HL-93	HL-93	LRFR	42.1	54.7	12/7/2007
120191	HL-93	HL-93	LRFR	42.1	54.7	12/7/2007
124128	HL-93	HL-93	LRFR	41.0	54.0	9/3/2009
120153	HS20+Mod	HL-93	LRFR	79.8	132.8	8/19/2010
120152	HS20+Mod	HL-93	LRFR	78.9	131.4	8/19/2010
120141	HL-93	HL-93	LRFR	37.1	44.3	6/1/2008
120140	HL-93	HL-93	LRFR	37.1	44.3	6/1/2008

Bridge No.	Original Design Load	Load Rating Design Vehicle	Load Rating Procedure Used	Inventory Rating (tons)	Operating Rating (tons)	Load Rating Date
120131	HS20	HS20	LF	37.8	63.0	1/1/2008
120130	HS20	HS20	LF	37.8	63.0	1/1/2008
120151	HL-93	HL-93	LRFR	40.0	52.0	3/14/2008
120149	HL-93	HL-93	LRFR	42.0	55.0	3/14/2008
120145	HS20+Mod	HS20	LF	40.7	67.4	10/11/2004
120148	HS20+Mod	HS20	LF	130.0	216.7	9/6/2010
120146	HL-93	HL-93	LRFR	46.8	57.2	1/1/2008
120144	HL-93	HL-93	LRFR	46.8	54.7	1/1/2008
120147	HS20+Mod	HS20	LF	35.3	59.0	1/1/2008
120143	HS20	HS20	LF	35.3	59.0	1/1/2008
030190	HL-93	HL-93	LRFR	38.9	50.4	12/1/2007
030189	HL-93	HL-93	LRFR	38.9	50.4	12/1/2007
030322	HL-93	HL-93	LRFR	49.7	64.4	2/22/2010
030321	HL-93	HL-93	LRFR	49.7	64.4	9/1/2008
030203	HS20	HS20	LF	37.1	62.3	1/1/2008
030202	HS20	HS20	LF	37.1	62.3	1/1/2008
030201	HS20	HS20	LF	51.5	85.7	1/1/2008
030200	HS20+Mod	HS20	LF	51.5	85.7	1/1/2008
030199	HS20+Mod	HS20	LF	41.5	69.1	8/13/2003
030197	HL-93	HL-93	LRFR	40.3	52.2	3/1/2016
030198	HL-93	HL-93	LRFR	38.5	50.0	3/1/2016
030205	HS20+Mod	HS20	LF	27.7	46.4	2/11/2015
030195	HS20+Mod	HS20	LF	36.7	66.6	4/11/2014
030196	HS20+Mod	HS20	LF	36.7	66.6	4/11/2014

3.3 Existing Environmental Features

Existing environmental features were reviewed to identify potential opportunities, impacts, and agency coordination required for projects along the corridor. Data for existing environmental features was collected using the Efficient Transportation Decision Making (ETDM) number 14400 Preliminary Programming Screen Report and other desktop resources. The programming screen Geographic Information System (GIS) analysis lists the resources within various buffered distances (100-, 200-, 500-, 1320-, 2640-, and 5280-feet). The appropriate buffer for existing conditions discussion depends on the resource type. The preliminary programming screen was previously published on June 23, 2019.

3.3.1 Social and Economic

3.3.1.1 Social Features

The ETDM Environmental Screening Tool Sociocultural Data Report (SDR) was used to obtain study area demographic data. Block groups within 500 feet of the project corridor were used to approximate study area demographic data using the 2017 American Community Survey, Five-Year Estimates. The SDR identified 6,219 households and a population of 16,322 people within the study area. The study area is within the Lee and Collier Counties.

The median household income is approximately \$65,213 annually, with nine percent of households below the poverty level. Approximately 0.85 percent of households in the study area receive some form of public assistance. As shown in *Table 3.19*, the study area has a higher median income and lower poverty rate than the Lee and Collier Counties' overall county-wide median numbers.

The study area population is comprised of approximately 34.52 percent minority, which is higher than the Lee County but lower than Collier County county-wide median. Most persons identifying as a minority are "Hispanic or Latino of Any Race" (24.45%), "Black or African American Alone" (6.22%), or "Asian Alone" (2.49%). During the programming screen, FDOT noted that 89 of 848 census blocks within the 500-foot project buffer contain a minority population greater than 40%. The U.S. Environmental Protection Agency (USEPA) also reported a minority population percentage of 34.52% and over 70 census blocks with a minority population of greater than 40% within the 500-foot project buffer abut intersections or interchanges that may need improvement.

The median age of persons in the study area is 54, with persons aged 65 and over comprising approximately 27.93 percent of the population which is a higher percentage than that of Lee County but lower than that of Collier County. Approximately seven percent of the study area population between the ages of 20 and 64 have a disability.

Most of the study area population speaks English with only 7.17% not able to speak English well or at all. *Table 3.19* below shows a comparison of socioeconomic data for the study area and the two counties.

Area	2017 Population	Median House- hold Income	Percent Households Below Poverty	Percent Households Receiving Public Assistance	Percent Minority	Percent with Disability (Age 20 – 64)	Median Age	Percent Limited English Speaking
Study Area	16,322	\$65,213	9.15%	0.85%	34.52%	6.75%	54	7.17%
Lee	700,165	\$52,052	12.75%	1.72%	31.55%	10.02%	48	5.46%
Collier	356,774	\$62,407	9.93%	0.84%	36.37%	6.90%	50	10.00%

Table 3.19: Socioeconomic Data

Source: 2017 American Community Survey, Five-Year Estimates

Community facilities within 500 feet of the project corridor are listed in *Table 3.20*.

Table 3.20:	Community	Facilities	within	500	Feet of	Corridor
rabio oneor	oonnanacy			000		00111001

Facility Name	Address
Cultura	I Centers
South County Regional Library	3585 Pine Ridge Road
Calusa Nature Center and Planetarium	3450 Ortiz Avenue
Hodges University – Naples Campus Library	2655 Northbrooke Drive
Emergen	cy Services
Golden Gate Fire Department Station 72	3280 Beck Boulevard
North Collier Fire & Rescue Station 46	3410 Pine Ridge Road
North Collier Fire & Rescue Station 42	7010 Immokalee Road
Promise Hospital of Fort Myers	3050 Champion Ring Road
Sci	hools
Keiser University – Fort Myers	9100 Forum Corporate Parkway
Rasmussen College – Fort Myers	9160 Forum Corporate Parkway
The Classical Academy of Naples	7070 Immokalee Road
Naples Christian Academy	3161 Santa Barbara Boulevard
Hodges University	2655 Northbrooke Avenue
Ave Maria University	1025 Commons Circle
Able Academy	3227 S Horseshoe Drive #111
Adonai Academy Incorporated	5621 Strand Boulevard Suite 108
Eagle's Nest Christian Academy	6920 Immokalee Road
Religiou	is Centers
Bethel AME Church	2935 64th Street Southwest

Facility Name	Address
Iglesia De Cristo Ebenezer	3001 Santa Barbara Boulevard
Unitarian Universalist Congregation	6340 10 th Avenue Southwest
Peace Lutheran Church	5659 Strand Court #101
Eagle's Nest Worship Center	6920 Immokalee Road
Golden Gate Assembly of God	3899 29th Avenue Southwest
Church of God Parkway Community	5975 Golden Gate Parkway
Seagate Baptist Church	1010 Whippoorwill Lane
Messiah Lutheran Church	5800 Golden Gate Parkway
First Baptist Church	6464 Immokalee Road
Center Point Community Church	6590 Golden Gate Parkway
Saint Monica's Episcopal Church	7070 Immokalee Road
Manantial De Vida Church	5990 Golden Gate Parkway
First Congregational Church	6464 Immokalee Road

3.3.1.2 Economic

I-75 (SR 93) is part of Florida's Strategic Intermodal System (SIS) highway network, providing regional access to employment centers, agricultural lands, and residential areas across the state as well as facilitating the movement of significant commuter, visitor, and freight traffic. Specific economic features that occur within the 500-foot project buffer include: two brownfields - portions of both are within an Enterprise Zone [Fort Myers-Lee County (EZ3601)], one aviation transportation facility [Southwest Florida International Airport], 27 Developments of Regional Impact, and 188 Planned Unit Developments. The proposed project improvements are part of a larger, regional set of projects on the interstate system to the north [in Charlotte, Sarasota, Manatee, Hillsborough, and Polk Counties] that are considering managed lanes and additional general-purpose lanes, auxiliary lanes, etc. to increase the operational capacity of not only I-75, but I-4 and I-275 as well. The intent is for all the project improvements to work together to improve the overall reliability and performance of the interstate system in moving high volumes of goods and people at efficient speeds. This, in turn, is expected to enhance access to existing employment centers and attract new employment to the area. While the proposed improvements to I-75 intend to enhance economic conditions of the surrounding area by accommodating travel demand projected because of population and employment growth along the corridor, access to proximate businesses along the corridor may temporarily be affected and/or modified during project construction.

The Florida Department of Economic Opportunity (FDEO) commented during the programming screen that the project is not located within a Rural Area of Opportunity. FDEO stated that the project has the potential to attract new development and new jobs as a result of improved access/mobility.

3.3.1.3 Land Use

A 500-foot buffer was used to review land use surrounding the corridor. Within the buffer, there are the cities of Fort Myers and Bonita Springs, the village of Estero, and five census designated places: North Fort Myers, Three Oaks, Golden Gate, Vineyards, and Island Walk. GIS analysis of the study area identified predominant land uses to be public/semi-public, residential, vacant non-residential, commercial/retail/office, and agricultural land uses; several golf courses (both public and private) also line the project corridor.

Table 3.21 shows the breakdown of 2017 parcel-derived generalized land uses within 500 feet and *Figure 3.12* displays existing land uses on a map.

According to the Future Land Use Maps of Lee and Collier Counties, the area surrounding the project corridor is expected to remain relatively unchanged and will continue to support current uses. The project is anticipated to accommodate existing and proposed development within the area. Future land use from each county is mapped in *Figure 3.13*.

FDEO commented during the programming screen that the project is compatible with local government comprehensive plans as the project intends to enhance local and regional mobility, enhance hurricane evacuation and disaster response, and support population and economic growth. However, FDEO noted that it is unclear whether the proposed improvements would be compatible with community development goals. FDEO further noted that some improvements on I-75 (such as interchange improvements) are identified in the local government comprehensive plans; these improvements are consistent with and/or will contribute to the project. FDEO identified the future land use categories and park and recreation facilities along the project corridor. FDEO reported that the project is not located within an Area of Critical State Concern, nor does it encroach on a military base. Last, FDEO stated that a small portion of the project is located within the Coastal High Hazard Area proximate to the shoreline area of the Caloosahatchee River.

The Collier County Comprehensive Plan identifies the following improvements related to I-75: (1) major intersection improvements at Vanderbilt Beach Road, Pine Ridge Road, and Golden Gate Road; (2) interchange or flyover improvements at Collier Boulevard; (3) ten lanes from north of Golden Gate Parkway to the boundary of Collier/Lee Counties; and, (4) a "Study Area" on I-75 from east of Collier Boulevard to the boundary of Collier/Lee Counties.

The Lee County Comprehensive Plan Future Transportation Map series identifies the following roadway improvements related to I-75: (1) intersection or interchange improvements at Bayshore Road, Palm Beach Boulevard, Luckett Road, Dr. Martin Luther King Jr Boulevard, Colonial Boulevard, Daniels Parkway, Terminal Access Road, Corkscrew Road, and Bonita Beach Road South East; (2) roadway improvements to I-75 from Bayshore Road to Palm Beach Road; and (3) roadway improvements to I-75 from Daniels Parkway to north of Alico Road.

FDOT District One reported that the area surrounding the project corridor mainly consists of public/semi-public, residential, vacant nonresidential, commercial/retail/office, and agricultural land uses; several golf courses also line the project corridor. FDOT indicated that the project area will continue to support current uses based on the Future Land Use Maps of Collier and Lee Counties. FDOT noted that the project is identified in the Strategic Intermodal System (SIS) FY 2018/19 - FY 2022/23 First Five-Year Plan, the SIS Long Range Cost Feasible Plan FY 2029 - 2045, the FY 2019 - 2024 FDOT Five Year Work Program, the FY 2018/19 - FY 2021/22 FDOT State Transportation Improvement Program (STIP), the Collier Metropolitan Planning Organization's (MPO)

FY 2019 - FY 2023 Transportation Improvement Program (TIP) - the Collier County portion only, and the FY 2018/19 - FY 2022/23 Lee County MPO's TIP - the Lee County portion only. FDOT additionally noted that the project corridor is identified as an unfunded need in Collier 2040 [Collier MPO's Long Range Transportation Plan (LRTP)], and a portion of the Lee County project corridor [from Collier County Line to Luckett Road] is identified as a need in the Lee County 2040 Transportation Plan [Lee County MPO's LRTP].

Generalized Land Use	Acres	Percent
Acreage Not Zoned for Agriculture	159	1.51%
Agricultural	663	6.29%
Industrial	120	1.14%
Institutional	146	1.39%
Mining	0	0%
Public/Semi-Public	2,101	19.94%
Recreation	455	4.32%
Residential	1,566	14.86%
Retail/Office	830	7.88%
ROW	566	5.37%
Vacant Residential	409	3.88%
Vacant Nonresidential	917	2.18%
Water	230	0.74%
Other Land Uses	586	30.5%

Table 3.21: Existing Land Use

Source: Florida Geographic Data Library, Land Use 2017

3.3.1.4 Farmland

A 200-foot buffer was used to review farmlands. The 200-foot buffer consists of 1,920.57 acres [36.63%] of soils classified as Farmlands of Unique Importance of which 33.73 [0.64%] are designated for agricultural purposes [horse farms, fallow crop land, improved pastures, ornamentals, and unimproved pastures]. While these soils are scattered along the length of the project corridor, the majority occur within Collier County. It should be noted that most of the area along the project corridor has been developed. In addition, much of the project corridor occurs within the Urbanized Areas of Cape Coral and Bonita Springs. Further, the Future Land Use Maps of both Collier and Lee Counties indicate that the corridor will largely continue to support urban uses. However, since some farmland will remain along the project corridor and NRCS coordination will be required, minimal involvement

regarding farmlands is anticipated. *Figure 3.14* shows Farmlands of Unique Importance which are designated for agricultural purposes and the urbanized area boundary.

Figure 3.12: Existing Land Use

3.3.2 Cultural Resources

3.3.2.1 Historic and Archaeological

Historic resources within the programming screen 500-foot buffer are documented in *Table 3.22*. There are over 25 previously recorded historic resources within 500 feet of the corridor dating back to the late 1800s, including structures, resource groups and one historic cemetery. Most of these resources are either National Register of Historic Places (NRHP)-ineligible or have not been evaluated by the State Historic Preservation Officer (SHPO). There is a potential for unmarked burials to extend outside the currently defined boundaries of the cemetery; any proposed subsurface improvements may need to consider this. Property appraiser data suggests the potential for over 90 unrecorded historic resources within 500 feet of the corridor. Based on the number of known and potential resources and the potential or unmarked burials within the project vicinity, moderate involvement regarding historic and archaeological sites is anticipated.

The Florida Department of State (FDOS) stated that a Cultural Resource Assessment Survey (CRAS) needs to be completed for the project. FDOS also noted that specific impacts will be identified once the CRAS is reviewed. The Seminole Tribe of Florida (STOF) reported that the project could affect unknown historic resources and requested to review the completed CRAS.

Archaeological resources within the programming screen 500-foot buffer were derived from the Florida Master Site File (2019) and are documented in *Table 3.23*.

Site ID	Site Name	Year Built	Survey Evaluation	SHPO Evaluation				
Standing Structures								
LL00983	Bonita Beach Road	No Date	Not Evaluated	Not Evaluated				
LL00984	Bonita Beach Road	No Date	Not Evaluated	Not Evaluated				
LL01461	8520 Bayshore Road	C1925	Ineligible	Not Evaluated				
LL02151	11401 Dean Street	1954	Ineligible	Not Evaluated				
LL02152	Tihen House	1905	Ineligible	Not Evaluated				
LL02153	11450 Pendleton Street	1954	Ineligible	Not Evaluated				
LL02154	27770 Imperial Street	1955	Ineligible	Not Evaluated				
LL02340	Building 10	1955	Ineligible	Ineligible				
LL02341	Building 90	1955	Ineligible	Ineligible				
LL02342	Longoria Residence	1955	Ineligible	Ineligible				
LL02343	Building 11	1955	Ineligible	Ineligible				
LL02344	Building 19	1955	Ineligible	Ineligible				
LL02345	Building 18	1955	Ineligible	Ineligible				
LL02346	Building 27	1955	Ineligible	Ineligible				

Table 3.22: Historic Resources

Site ID	Site Name	Year Built	Survey Evaluation	SHPO Evaluation		
LL02347	Building 26	1955	Ineligible	Ineligible		
LL02390	136 Maine Avenue	C1957	Ineligible	Ineligible		
LL02391	138 Maine Avenue	C1950	Ineligible	Ineligible		
LL02392	144 Maine Avenue	C1950	Ineligible	Ineligible		
LL02393	155 Schneider Drive	C1955	Ineligible	Ineligible		
LL02394	5313 Maynard Street	C1955	Ineligible	Ineligible		
Resource Groups						
CR01104	Alligator Alley/Everglades Parkway	NA	NA	Eligible		
LL02063	Buckingham Military Railway	NA	NA	Ineligible		
LL02332	Fort Myers/Big Cypress Military Trail	NA	NA	Ineligible		
LL02339	Teter Migrant Worker Camp	NA	NA	Ineligible		
LL02443	SR 82	NA	NA	Ineligible		
Cemeteries						
LL02066	Bonita Springs Cemetery	1895	NA	Not Evaluated		

Source: Florida Master Site File, 2019

Table 3.23: Archaeological Resources

Site ID	Site Name	Site Type	Site Culture	Survey Evaluation	SHPO Evaluation
CR00230	Green Heron Hammock/ Possible Old Field	Prehistoric burial(s)	Prehistoric	Not Evaluated	Not Evaluated
CR00697	Mullberry Midden	Campsite (Prehistoric)	Glades II, A.D. 750- 1200	Likely NRHP Eligible	Not Evaluated

Source: Florida Master Site File, 2019

3.3.2.2 Recreation

The following recreational areas/features are reported within 500 feet of the corridor: several Florida Managed Areas [one of which is a National Park Project and another is designated as SFWMD Save Our Rivers Lands] - most are open to the public; one Florida Forever Board of Trustees (BOT) Project [Corkscrew Regional Ecosystem Watershed] - open to the public; 25 golf courses; eight park and recreational facilities; 12 existing recreational trails; seven Office of Greenways and Trails (OGT) multiuse trail opportunities [two of which are also OGT hiking trail priorities and one of the two is part of the Shared-Use Nonmotorized (SUN) Trail Network]; and two OGT paddling trail opportunities [Okeechobee Waterway Trail and Orange River Trail]. While the proposed improvements are anticipated to be constructed primarily within the existing right of way, some additional right of way may be required. As such, a Summary Degree of Effect of Moderate has been assigned to the "Recreation Areas" issue given the proximity of some of these amenities to the project corridor and the fact that access to and

enjoyment of these noted features may temporarily be impacted during project construction. *Table 3.24* Lists the recreation areas/features and *Figure 3.15* displays their locations on a map.

The South Florida Water Management District (SFWMD) did not identify any issues or potential project effects related to recreation areas/features.

Name	Туре	Owner / Manager				
Florida Managed Areas						
Logan Woods Preserve	Preserve	Collier County				
Six Mile Cypress Slough Preserve	Preserve	Lee County				
Six Mile Cypress Slough Preserve North	Preserve	Lee County				
Calusa Nature Center and Planetarium	Natural Area/Museum	City of Fort Myers				
Imperial Flow Way	Natural Area	SFWMD				
Caloosahatchee National Wildlife Refuge	Preserve	USFWS				
Hidden Cypress Preserve	Preserve	Lee County				
Edison Farms Preserve	Preserve	Lee County				
Caloosahatchee Creeks Preserve	Preserve	Lee County				
Local Park and Recreation Facilities						
Three Oaks	Neighborhood Park/Athletic	Lee County				
Orange River Canoe Trail	Neighborhood Park/Mixed Use Recreation	Lee County				
Palm Springs Neighborhood Park	Neighborhood /Playground	Collier County				
North Naples Regional Park	Nature Park	Collier County				
Vineyards Community Park	Neighborhood Park/Mixed Use Recreation	Collier County				
Logan Woods Preserve	Nature Park/Preserve	Collier County				
Caloosahatchee Creeks Preserve West Trailhead; Canoe Launch	Nature Park/Boat Ramp	Lee County				
Caloosahatchee Creeks Preserve	Nature Park/Preserve	Lee County				
Eastwood Golf Course	Neighborhood Park/Golf Course	City of Fort Myers				
Stoneybrook Community Park	Neighborhood Park/Mixed Use Recreation	Stoney Brook Community Association				
Marni Fields Park	Neighborhood Park/Athletic	City of Bonita Springs				
Trails						
Caloosahatchee Creeks Preserve Trail	Hiking	Lee County				
Colonial Boulevard Trail	Multi-Use	FDOT				
Daniels Buckingham Trail	Multi-Use	FDOT				

Name	Туре	Owner / Manager
Great Calusa Blueway Trail Phase I	Paddling	Lee County
Great Calusa Blueway Trail Phase III	Paddling	Lee County
Immokalee Road Trail	NA	NA
Marco Island Loop Corridor	Multi-Use	NA
North Colonial Linear Trail	Multi-Use	City of Fort Myers
North Colonial Trail	Multi-Use	NA
Palm Beach Boulevard Trail	Multi-Use	FDOT
Ortiz Avenue Trail	Multi-Use	FDOT
Six Mile Cypress Parkway Trail	Multi-Use	FDOT

Source: Florida Geographic Data Library

3.3.3 Natural Resources

3.3.3.1 Wetlands and Other Surface Waters

Within 200 feet of the corridor, the National Wetlands Inventory (NWI) database reports a total of 1,120.11 acres [21.36%] of palustrine, riverine, estuarine, and lacustrine wetlands; palustrine wetlands compose the majority. The SFWMD Wetlands 2014-2016 database identifies a total of 502.74 acres [9.59%] of wetlands within the same designated area consisting of wet pinelands/hydric pine, followed cypress, along with cypress – mixed hardwoods, cypress – domes/heads, freshwater marshes/graminoid prairie – marsh, mangrove swamp, mixed shrubs, mixed wetland hardwoods, saltwater marshes/halophytic herbaceous prairie, wet melaleuca, wet prairie, wetland coniferous forests, and wetland forested mixed. A desktop review of NWI and SFWMD wetland databases and aerial imagery was performed to map wetlands more accurately in the project area as depicted in *Figure 3.16*. Since the project area is urban in nature, these noted wetlands are predominantly associated with the Caloosahatchee River as well as proximate parks and Florida Managed Areas.

Avoidance and minimization measures will be incorporated into the project's design, best management practices will be utilized during project activities, and compensatory mitigation will be provided for any adverse wetland impacts resulting from the proposed project improvements. Further, the proposed stormwater management system for the project will be developed to meet the design and performance criteria established in the SFWMD Environmental Resource Permit Applicant's Handbook Volumes I and II for the treatment and attenuation of discharges to nearby waterbodies. As such, stormwater runoff from the proposed project will be treated to prevent water quality impacts to nearby wetlands. While the project improvements are anticipated to be constructed primarily within the existing right of way, some additional right of way may be required to accommodate the proposed added lanes as well as any new or enhanced stormwater management facilities. Given the proximity of the noted wetlands to the project, moderate involvement regarding wetland resources is anticipated. A Natural Resources Evaluation will be included in the Project Development and Environment Study scoping recommendations.

FDEP, U.S. Fish and Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), SFWMD, U.S. Army Corps of Engineers (USACE), and USEPA commented on wetlands and other surface waters during the Programming Screen. FDEP noted that the project will require an Environmental Resource Permit (ERP) from the SFWMD, and the ERP applicant will need to eliminate or reduce the proposed wetland impacts to the greatest extent practicable. USFWS made general comments that wetlands, which provide important habitat for fish and wildlife, may occur within and near the project site. USFWS further recommended that the project be designed to avoid impacts to wetlands within the area; full compensatory mitigation is required for unavoidable wetland impacts. NMFS comments are discussed in the Essential Fish Habitat section of this report.

SFWMD stated that there are existing conservation easements in some areas adjacent to the I-75 right of way. SFWMD noted that reduction and elimination opportunities are limited due to the linear nature of the project; conservation easement releases may be necessary depending on additional right of way needs.

USACE reported wetland acreages within the 500-foot, 200-foot, and 100-foot buffers. USACE noted that estuarine and palustrine wetlands in the project area that are deemed to be jurisdictional [i.e., wetlands primarily associated the Caloosahatchee River Basin (Okeechobee Waterway)] likely contain

EFH; these wetlands are present along the corridor and could potentially be impacted because of fill associated with the roadway and possible bridge improvements. USACE recommended that wetland avoidance and minimization opportunities be considered throughout the planning process, a wetland survey be conducted, and on-site and/or off-site mitigation options be identified as the project does not occur within a service area of a federally approved mitigation bank or in-lieu fee program. USACE stated that a Standard Individual Permit review is likely due to the presence of tidal waters and Outstanding Florida Waters (OFWs). USACE added that a Nationwide 3 (Maintenance) permit and/or a Nationwide 15 (U.S. Coast Guard Approved Bridges) permit could be used as the project advances.

USEPA restated the wetland and surface water resources identified in the Preliminary Environmental Discussion (PED). USEPA noted that the project area is expected to experience an increase in stormwater runoff and an increase in pollutants with the expansion of impervious surface area because of the project; the project could lead to loss of wetland function, loss of wildlife habitat, degradation of water quality in wetlands and surface waters, and reduction in flood storage and capacity. USEPA stated that placement of fill into jurisdictional waters of the United States should be avoided and minimized to the greatest extent practicable. USEPA added that the acreage and type of wetland to be filled, along with proposed mitigation, will further determine the impacts to wetlands. USEPA indicated support for the avoidance, minimization, and mitigation measures identified in the PED and recommended additional implementation activities to protect wetlands and surface waters.

3.3.3.2 Water Resources

Within the project corridor, stormwater runoff from I-75 is currently collected and treated via vegetated swales located along both sides of the roadway before offsite conveyance to adjacent waterbodies. including existing stormwater ponds. The 200-foot project buffer occurs within the watersheds of 20 impaired waters - five have adopted or planned Total Maximum Daily Loads (TMDLs). Also present within the 200-foot project buffer are two Outstanding Florida Waters (OFWs) [Caloosahatchee National Wildlife Refuge and Estero Bay Tributaries] - both are also designated NOAA Marine Protected Areas, one Northern Everglades and Estuaries Protection Program Watershed [Caloosahatchee River Watershed], two designated SFWMD - Save Our Rivers Lands [Corkscrew Regional Ecosystem Watershed and Six Mile Cypress I], the Surficial Aguifer System [a principal aguifer of the State of Florida], a recharge area of the Floridan Aquifer, six SFWMD canals, seven Super Act wells, and four National Pollutant Discharge Elimination System (NPDES) stormwater permits. The proposed stormwater management system will be developed to meet the design and performance criteria established in the SFWMD Environmental Resource Permit Applicant's Handbook Volumes I and II for the treatment and attenuation of discharges to impaired waters and OFWs; the design will make every effort to maximize the treatment of stormwater runoff from the proposed roadway improvements. A Storm Water Pollution Prevention Program (SWPPP) will also be implemented [as required by the NPDES permits] to control the effects of stormwater runoff during construction. In addition, the Caloosahatchee and Everglades West Coast Basin Management Action Plans will be consulted.

FDEP, SFWMD, and USEPA commented on Water Resources during the Programming Screen. FDEP stated that every effort should be made to maximize the treatment of stormwater runoff, and stormwater treatment should be designed to maintain the natural predevelopment hydroperiod and water quality, as well as to protect the natural functions of adjacent wetlands. SFWMD identified existing Environmental Resource Permits (ERPs) 36-03802-P and 11-00396-S and indicated that these permits may need to be modified to include the project. SFWMD also reported that since the project will potentially discharge to waterbodies which have impairments and Total Maximum Daily Load (TMDL) requirements, the project will need to meet local basin rates determined by the appropriate agency. SFWMD added that the proposed stormwater management system must provide an additional 50% of water quality treatment volume prior to discharging offsite.

3.3.3.3 Floodplains

According to the DFIRM (SFHA) 100 Year Flood Zones data, 1,490.47 acres [28.43%] of the 200-foot project buffer occur within the 100-year floodplain [Flood Zones AE, AH, and A]. The 100-year floodplain is located throughout the length of the project corridor; it is primarily concentrated at the southern end of the project, south of Bonita Beach Road. The project also crosses the 100-year floodplain associated with the Caloosahatchee River and Six Mile Cypress Slough Preserve. Floodplain compensation associated with project impacts will be addressed through necessary agency coordination. *Figure 3.17* displays the floodplains on a map.

During the programming screen, SFWMD commented that due to the project's location, floodplain compensation will be needed, and the project's design will need to meet floodway criteria as noted in the Environmental Resource Permit Applicant's Handbook.

3.3.3.4 Protected Species and Habitat

The 200-foot project buffer occurs within the Caloosahatchee to Lee Coast and Southwest Coast Ecosystem Management Areas; USFWS Consultation Areas for crested caracara, American crocodile, Florida bonneted bat, West Indian manatee, Florida panther, red-cockaded woodpecker, Florida scrub jay, snail kite, and Southwest plants; USFWS Primary and Secondary Focus Area Zones for the Florida panther; USFWS Service Area for the Florida scrub jay; Common and Abundant Ranges for the Florida black bear; critical habitat for the West Indian manatee and smalltooth sawfish; and Core Foraging Area for the wood stork. It should be noted that the project crosses the Caloosahatchee National Wildlife Refuge and Six Mile Cypress Slough Preserve [designated SFWMD Save Our Rivers Lands] and is within proximity to six other protected Florida Managed Areas [one of which is a National Park Project (Caloosahatchee Creeks Preserve)] as well as one Florida Forever Board of Trustees (BOT) Project [Corkscrew Regional Ecosystem Watershed – also designated as SFWMD Save Our Rivers Lands].

According to the USFWS Information for Planning and Consultation species lists, federally listed species potentially occurring in the two-county area include: four mammals, eight birds, five reptiles, one fish, and four plants. Per the Florida Natural Areas Inventory (FNAI) database, two federal endangered/threatened species have been documented or are likely to occur within the 200-foot project buffer [Florida panther and wood stork]. Other wildlife and habitat related resources located within the 200-foot project buffer include: three FWC Manatee Protection Zones; 52 Florida black bear nuisance reports; 18 Florida black bear road kills; 16 Florida panther road kills; a Florida Forest Service facility; and prescribed burning areas [including Caloosahatchee Creeks Preserve, Six Mile Cypress Slough Preserve, and Six Mile Cypress Slough Preserve North]. Avoidance and minimization measures will be implemented for the noted species to the greatest extent practicable. In addition, agency coordination will take place to address potential project impacts to each species. While the project is predominantly urban in nature, moderate involvement regarding wildlife and habitat resources is anticipated due to the number of sensitive resources within proximity to the project and the fact that the project crosses protected lands. Table 3.25 shows species listed as Federally Endangered (FE), Federally Threatened (FT), Federal Candidate (FC), State-Endangered (SE), and State-Threatened (ST) with potential to occur near the corridor. Figure 3.18 displays known wildlife habitat and managed areas.

Common Name	Scientific Name	Listing Status							
Birds									
Audubon's Crested Caracara	Caracara cheriway	FT							
Everglade Snail Kite	Rostrhamus sociabilis plumbeus	FE							
Florida Scrub-Jay	Aphelocoma coerulescens	FT							
Florida Burrowing Owl	Athene cunicularia	ST							
Florida Sandhill Crane	Grus Canadensis	ST							
Florida Grasshopper Sparrow	Ammodramus savannarum floridanus	FE							
Least Tern	Sternula antillarum	ST							
Little Blue Heron	Egretta caerulea	ST							

Table 3.25: Federal and State Listed Species

Common Name	Scientific Name	Listing Status	
Piping Plover	Charadrius melodus	FT	
Red Knot	Calidris canutus rufa	FT	
Red-Cockaded Woodpecker	Picoides borealis	FE	
Roseate Spoonbill	Platelea ajaja	ST	
Reddish Egret	Egretta rufescens	ST	
Tricolored Heron	Egretta tricolor	ST	
Wood stork	Mycteria americana	FT	
	Fishes		
Atlantic sturgeon	Acipenser oxyrinchus	FT	
Smalltooth Sawfish	Pritis pectinata	FE	
	Mammals		
Florida Panther	Puma concolor coryi	FE	
Puma (=mountain Lion)	Puma (=Felis) concolor (all subsp. Except coryi)	Similarity of Appearance (FT)	
Florida Bonneted Bat	Eumops floridanus	FE	
West Indian Manatee	Trichechus manatus	FT	
Florida Prairie-Clover	Dalea carthagenensis floridana	FE	
Garber's Spurge	Chamaesyce garberi	FT	
	Reptiles	-	
American Alligator	Alligator mississippiensis	Similarity of Appearance (FT)	
American Crocodile	Crocodylus acutus	FT	
Eastern Indigo Snake	Drymarchon couperi	FT	
Florida Pine Snake	Pituophis melanoleucus	ST	
Gopher Tortoise	Gopherus polyphemus	FC, ST	
Loggerhead Sea Turtle	Caretta	FT	
Kemp's Ridley Sea Turtle	Lepidochelys kempii	FE	

During the Programming Screen, FWC, USFWS, and SFWMD commented on the presence of protected species and habitat. FWC identified the Caloosahatchee River and the mosaic of fresh and saline wetlands within the river floodplain, as well as the forested wetlands within the Edison Farms Preserve east of Estero and the Six-Mile Cypress Slough Preserve as the most valuable wildlife habitat within the project area. FWC commented that primary wildlife issues associated with the project include potential loss of wetland and upland wildlife habitat; potential increase in wildlife roadkill; potential injury to manatees and other aquatic life during in-water construction; potential adverse effects to a significant number of listed species; and potential water quality impacts during construction. FWC added that this project would intensify the habitat fragmentation effect of I-75, creating a substantial barrier to wildlife movement. FWC requested that FDOT explore the possibility of including large mammal wildlife crossings in the project design and recommended places for the crossings. FWC listed several measures for conserving fish and wildlife and habitat resources that may occur within and adjacent to the project area, such as following Standard Manatee Conditions for In-Water Work and FWC's gopher tortoise survey methodology and permitting guidance.

USFWS indicated that the project is located within the geographic range of the endangered Florida bonneted bat and requested that surveys be conducted (both roosting and acoustic) if suitable habitat occurs within or near the project footprint. USFWS also reported that the project occurs within the Core Foraging Area of three active nesting wood stork colonies; any lost foraging habitat resulting from the project must be mitigated within the same Core Foraging Area as the affected nesting colony. USFWS added that for projects that impact five or more acres of wood stork foraging habitat, the USFWS requires a functional assessment be conducted using the "Wood Stork Foraging Analysis Methodology". USFWS recommended that FDOT prepare a Biological Assessment during the PD&E phase of the project. USFWS further recommended using native plants, trees, shrubs, and wildflowers in the landscaping of the project to benefit fish, wildlife, and insect pollinators.

SFWMD stated that management plans for affected species should be implemented during project construction.

3.3.3.5 Essential Fish Habitat (EFH)

NMFS staff conducted a site inspection of the project area on July 16, 2019, to assess potential concerns related to living marine resources within the Caloosahatchee River and San Carlos Bay. Certain estuarine habitats within the project area are designated as EFH as identified in the 2005 generic amendment of the Fishery Management Plans for the Gulf of Mexico. The generic amendment was prepared by the Gulf of Mexico Fishery Management Council as required by the 1996 amendment to the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act). Estuarine habitats, which exist in the project area, have been identified as EFH for juvenile and adult red drum, juvenile goliath grouper, and juvenile and adult gray snapper by the Gulf of Mexico Fishery Management Council under provisions of the Magnuson-Stevens Act. Also, several other species using these habitats are prey species for federally managed species. Mangroves occur beneath and adjacent to the I-75 Caloosahatchee River Bridges on either shoreline or on the island in the middle of the river that the bridge bisects. Mangroves, estuarine water column, and mud, sand, shell, and rock substrates are specific categories of EFH that may be directly impacted by the project. Therefore, NMFS requests that an EFH Assessment be prepared and included in the Natural Resources Evaluation Report.

Also, mangroves, seagrasses, and salt marshes downstream of the project at the mouth of the Caloosahatchee River and in San Carlos Bay may be indirectly affected by the project. The widening of the road and bridge could result in increased use and an increase in the amount of sediment, oil and grease, metals and other pollutants reaching downstream estuarine habitats utilized by marine fishery resources.

During the programming screen, NMFS recommended that the bridge widening be designed to direct stormwater off the bridge for treatment before it is discharged into the Caloosahatchee River. In addition, best management practices should be employed during bridge construction to prevent sedimentation of estuarine and marine habitats. In addition, NMFS stated that an Endangered Species Act Section 7 consultation be conducted for smalltooth sawfish and its designated critical habitat when sufficient project details become available. The project lies within the designated critical habitat of smalltooth sawfish and will likely require a formal Endangered Species Act Section 7 consultation.

3.3.4 Physical Resources

3.3.4.1 Air Quality

The project extends through Collier and Lee Counties which are currently designated by the US Environmental Protection Agency (EPA) as attainment for all the National Ambient Air Quality Standards under the criteria provided in the Clean Air Act (CAA)(40 CFR part 50). Therefore, the project area is at an acceptable level for carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM_{2.5} and PM₁₀), and sulfur dioxide (SO₂). As a result, the CAA conformity requirements do not currently apply to this project.

3.3.4.2 Contamination

The following potential sources of sub-surface contamination are reported within the 200-foot project buffer: two brownfields [Dunbar Enterprise Zone and Fort Myers Wellfield Area], 31 USEPA Resource Conservation and Recovery Act (RCRA) regulated facilities [which include most of the 26 hazardous waste facilities identified], 48 storage tank contamination monitoring sites [which include most of the 46 petroleum contamination monitoring sites identified], 23 Super Act risk sources [which include

some facilities listed as a petroleum contamination monitoring site or USEPA RCRA regulated facility], as well as one open and one closed waste cleanup responsible party sites. Moderate involvement regarding contamination is anticipated due to the proximity of these sources to the project and the potential presence of unreported sources of subsurface contamination, especially given the presence of the brownfields located adjacent to the I-75 at SR 82 interchange. Potentially contaminated sites within the project area are shown in *Figure 3.19*.

FDEP, SFWMD, and USEPA commented during the programming screen. FDEP indicated that any land clearing or construction debris must be characterized for proper disposal and provided references for the proper handling/management/cleanup of potentially hazardous materials, solid waste or other non-hazardous materials, and petroleum sources. FDEP recommended early planning to accurately identify and characterize cleanup sites to meet construction and cleanup timeframes. FDEP stated that there are "off-property" notification responsibilities potentially associated with this project.

SFWMD stated that construction methodologies, such as dewatering, must be designed to minimize movement of contaminant plumes.

USEPA reported that soils, groundwater, and surface water have the potential to be negatively affected by sources of contamination; land use may also be degraded. USEPA stated that if any petroleum storage tanks are to be impacted or removed during construction, sampling and analysis of soils and groundwater should be conducted to determine if petroleum and hydrocarbon pollutants are present above regulatory levels. USEPA recommended that corrective action of contamination be completed before commencement of project activities.

3.3.4.3 Navigation

The proposed project crosses over the Okeechobee Waterway (Caloosahatchee River) via the I-75 southbound and northbound bridges (bridge numbers: 120083 & 120084). The Okeechobee Waterway is classified as a navigable waterway that extends from Lake Okeechobee to the east and opens to San Carlos Bay to the west. As such, any modifications to the existing bridge structures would require a permit from the US Coast Guard (USCG) pursuant to the General Bridge Act of 1946 (33 USC 525), and Section 404 and Section 10 permits from the US Army Corps of Engineers (USACE) pursuant to the Clean Water Act and Rivers and Harbors Act, respectively. The Okeechobee Waterway is also a federal public works project governed under Section 408 of the Clean Water Act and would require a letter of permission from the USACE for any modifications to the waterway.

Figure 3.19: Potentially Contaminated Sites

4.0 References

FDOT, Project #14400 I-75 (SR 93) South (FPID 442519-1-22-01, 442519-2-22-01, 442519-3-22-01), Final Programming Screen Report. February 27, 2020.

FDOT, Project #14400 I-75 (SR 93) South (FPID 442519-1-22-01, 442519-2-22-01, 442519-3-22-01), GIS Analysis Report. 2019.

FDOT, Project #14400 I-75 (SR 93) South (FPID 442519-1-22-01, 442519-2-22-01, 442519-3-22-01), Advanced Notification Package. 2019.

FDOT, Project #14400 I-75 (SR 93) South (FPID 442519-1-22-01, 442519-2-22-01, 442519-3-22-01), Sociocultural Data Report. 2019.

5.0 Appendices

ATE ROAD NO.	COUNTY	DISTRICT ROADWAY ID SHEE				
SR 93	COLLIER	01	03175000	7 OF 9		
	1	,	I	55.0		
		1				
	MM 105.5					
	• <u>2</u>					
			1			
	1		1			
	B=N00°39'	47"W				
Ϋ́						
32 290' CI						
54.56 X 5' X						
1-10						
~ ~						
	1			58.0		
		_!				
	MM 108.5					
	627					
	\$ <u>21</u>					
		1				
i i						
			,			
Ĭ ₈		_N	8			
		776	×112.	x 224' (
57 - 66")		57 1 - 60".) 57	1 - 60" .	57		
Ţ		Ϋ́.				

																	_
		5 YR INV		SLD REV	BMP 00.063	EMP	NV	SLD REV			MENT DE TRANSP		FDOT		SECTION STATUS	INT. or US ROUTE NO.	S
DATE		03/29/2018		04/13/2018	00.063	63.676		09/11/2020 (F241)		RAICH					02	175	
BY		FTE		FTE											02	175	
	6	2.0	,	1	-					1			63.0			1	
		* BONITA SPRINGS				1	1	1		1	1	1	1		1		:
		* <= 75		1	1	1		1		1	1	1	1		1		
		* < 75	MM			1			MM					MM			
			113			i.			113.5					. 114			
		122							616					115			
		62.		1	1			0	62.	1		1	1	83	1	1	
)		1				0	1	1	1	1	ò	1	1	
						1					1					1	
	ROADWAY			1									1	;		1	
		1		1	1							1	1		1	1	
	FEATURES												1				
	LANE WIDTHS																
	ARE AVERAGED	182 0' - 72 0'											1				
		6 - 12.0' RDWY											1				
		66.0 VEG W/ CBL MED											1				
		2 10.0 WARN INSHEDT											1				
		2 - 12.0' LWN SHLD2											1				
	ROADWAY	28/FC-4															
	NOADWAT																
	COMPOSITION	28/FC-4															
		CURVE DATA NOT FIE	LD VERIFIEI)								A=19°28'46.00'	"				
												D=1°00'					
	HORIZONTAL											PC=62.889					
	ALIGNMENT											PT=63.259					
															B=N19°57'2	0"W	
		Y							Y						Yo		
		l g			g				2 2						ĕ		
	STRUCTURE	5 G			9 20, C				10 L						220		
	ONGOIGHE	× 204			žet×				X 22						3.25 3' X.		
	DESCRIPTION	3 8			3 8				30" 65						9 ×		
					+				+						-9		
					X				X						\sim		
	DISTRICT USE																
	sis	SIS CORRIDOR															
	1 011 01/000	CODAN FRINANT INT.															

ATE ROAD NO.		COUNTY	DISTRICT	ROADWAY ID	SHEET NO:
SR 93	с	OLLIER	01	03175000	9 OF 9
		END MP: (NET ROADWAY ID I	.TES N 'W	613	
S	SIS CORRIDOR				

—		5 YR NV	SLD REV	BMP EMP	INV SID REV		y .	81	0507/01/05	N.T. 10 I	
DATE		05/31/2018	06/19/2018	00.000 34.138	12/12/19,6/22/20(F241)	FLORIDA DEPARTMENT OF 1		T Ø	SECTION STATUS	INT. or US ROUTE NO.	SI
BY		FTE	FTE			STRAIGHT LINE	E DIAGRAM OF RO	AD INVENTORY	02	75	
	2	80				29.0		-		30.0	
	2	INSIDE URBAN, OUTSIDE CITY	g OUTSIDE	CITY & URBAN		29.0		1 1		30.0	
		* CAPE CORAL							· ·	1 I	
		* <sr 93="" int<="" td=""><td>ERCHANGE #143</td><td>3 1</td><td></td><td></td><td></td><td></td><td>: <u>`</u></td><td>س</td><td>1</td></sr>	ERCHANGE #143	3 1					: <u>`</u>	س	1
		* <1 75	(78)	1				144	:	90 MM	
		N SH N		207-					: : : : : : : : : : : : : : : : : : : :		1
			75036 SB 00	20/5038 SB C		133 002		203			
			28.122 、	< 8.591 S OFF		29	· · · ·	29	V		
						• • •		0			-
		長苗 120750		37 NB ON 28.597 174.0'	- 72.0'				н н Н н		1
	BOADWAY		35 NB OFF 120739	0 720' 0 6-120 € 65 0 V	J' RDWY EG W/ GRD MED						1
	ROADWAT	6 12.0'R		12.0' RDWY 7 2 12.0	WARN INSHLD1	i i i	i i i			7 H (i i
	FEATURES	64.0 OTH	ER W/ GRD MED (78) 🐴 66.	0 VEG W/ GRD MED 80 8.0' W	ARN SHLD1 - LT				ſ		
		0 23.0' WAF	RN INSHLD1 LT 00 19.	0' WARN INSHLD1 - LT 🎽 9.0' W/	ARN SHLD1 - RT					Ľ	
		N 24.0' WAF	N INSHLD1 - RI 18.	0'WARN INSHLD1 RT 2 4.0'	VG SHLD2						
		10.0 WAR	N SHLDI-EL 2	8.0' WARN SHLD1 12.0' L'	WN SHLD3 - RT						
	LANE WIDTHS	188.0' 96.0' 2 12.0'L	WN SHLD2 _ 6 12 0' RDWY	162 0' - 72 0'							
	ARE AVERAGED	41.0 OTHER W/ GRD MED	66.0 VEG W/ GRD MED	9 6 - 12.0' RDWY	181.0' - 72.0'	1	451.0'	- 72.0'		1	
		11.0' WARN INSHLD1 - LT	21.0' WARN INSHLD1	LT 🏷 65.0 VEG W/ GRD MED	8 - 12.0' RDWY		6 - 12	D' RDWY			
		12.0' WARN INSHLD1 - RT	N 19.0' WARN INSHLD1	RT 0 2 12.0' WARN INSHLD1	65.0 VEG W/ GRD MED		4 335.0	/EG W/ GRD MED			
		16.0' WARN SHLD1 - LT	2 - 8.0' WARN SHLD1	N 8.0' WARN SHLD1 - LT	N 2 12.0 WARN INSHLD1		$\binom{00}{2}$	0' WARN INSHLD1			
		11.0' WARN SHLD1 - RT	2 4 0 VG SHLD2 12 0'TWN SHLD3 TT	2 4 0' VG SHLD1 - R1	2 12 0' I WN SHI D2		2 - 10.	D'WARN SHLDT			
-		Z - 12.0 LWIN SHLDZ	12.0 EWN GREDO - ET	2-4.0 VG SHED2			2 12.	5 EWIN SHED2			
	ROADWAY	28/FC-2									
	COMPOSITION										
	SOME USERIUN	28/FC-2									
		CURVE DATA NOT FIEL	LD VERIFIED	PC=2	8.657		∆=30°00'41.00'	,	Δ=30°00'41.00"		Δ=30°00'4
				PI=28	1922 D 166		P=0°30'		P=0°30'		D=0°30'
	HORIZONTAL			- 1=2 A=40	16/02.00"		PC=29.418		PC=29.418		PC=29.418
	ALIGNMENT			Δ=40 D=1°3	30'		PI=30.000 PT=30.555		PI=30.000 PT=30.555		PI=30.000 PT=30.555
						B=N75	46'41"W		-		11-00.000
		+ ⁶⁴ − ¹² −	389 3348	~	~	~	× ×	~		0444	
		[™] #0100 [™]	8 #0112 8		국리	국리	ľ ľg		53	137 🖏	
		401.3	216.5	53	55	55	8		26	4 0	3
	STRUCTURE		BR	00			282 237	4 7 7		B92	5 g
	DECODIDUTION	20 × +0101	#0113	80 0 8			1 × 2		/	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u><u></u><u></u><u></u></u>	< 00
	DESCRIPTION	184.8 BR	216.5° BB	××	× 3 7		× 30			26.4 0 00 CB	8
						n m	2 7 2	0 m		6 4 .	-
		3.05	333	λ			$\lambda = \lambda^{*}$	X		66.e	X
	DISTRICT USE		- 3 3							- % %	
I –											
	SIS	CORRIDOR									
	FUN CLASS	URBAN PRIN ART INT.		RT INT.							
	2	10			33.0			33.0			
	5	OUTSIDE CITY & URBAN			52.0			33,0			
		* <=1-75		~				i i i		i i	
		* < 75				MAA			M I		
		145.5			×	146.5		14	7.5		148
										· · · ·	~
		01	2 P	<u>8</u> \.5/	No. 18		Lis No.	905			- 26
		1.00	<u> </u>					33 '			8 -
											1
			i <u>e</u> i		//	i i i		i i i	i i	i i	
	ROADWAY		- <u>I</u> TA		2. (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)<td></td><td>8</td><td></td><td></td><td>i i</td><td></td>		8			i i	
		1 1	י <mark>א</mark> י	' / 'B \ /	ξ Ν	1 I I I	· · · / · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·		i.
	FEATURES			" A A A A A A A A A A A A A A A A A A A	00 "		<i>u</i> 11				
				Ω	à						
					1			1			
					1 1						
	LANE WIDTHS				1			1			
	ANE AVERAGED	181.0' - 72.0'							N 281.0' - 72.0'		
		65 0 VEG W/ GPD MED							C 165 0 VEC W/ CBD M	-n	
		2 - 12 0' WARN INSHI D1						1		ם <u>-</u> 1	
		2 - 10.0' WARN SHLD1			1 1			1	2 - 10.0' WARN SHLD1		
		2 - 12.0' LWN SHLD2							2 - 12.0' LWN SHLD2		
	ROADWAY	28/FC-2									
	RUADWAY										
	COMPOSITION	28/FC-2									
⊢										1000140.00	
		CORVE DATA NUT FIEL	LD VENIFIED						Δ=21°00'42.00" Δ=2 D=1°00' D=1°	1°00'42.00" //	∆=21°00'42.0 D=1°00'
	HORIZONTAL								PC=33.144 PC=	33.144	PC=33 200
	ALIGNMENT								PI=33.345 PI=3	3.345 F	PI=33.401
									PT=33.542 PT=3	33.542 F	PT=33.583
$ \vdash$											в=N24
			<u> </u>		5 53	Y	7	g Ya		Y	
		8	136 CC	1 66 80	2 2 2 2	8	5.7(2.7(2.7		2	8
	STRUCTURE	4 08.0	0 10 ° #0114 °		° #0133 °°	000	× 8 × #013	4 [°]		- ² 4.0	24' (
		20×	87 52.8' X ⊔P	58 1' 58 1'	37' CB	×311	26.4 NX	×207		80× 50 0	×
	DESCRIPTION	- ³	∞[⁴ , ⁵] %	×× ↓ − − − − − − − − − − − − − − − − − −				*]» ~		33. 33	48"
			2	××		2	÷	-0 -0			-
			Ļ			\downarrow	人 人	Ĺ		Ļ	<
$ \vdash$								X		~	•
I L	DISTRICT USE										
	sis	CORRIDOR									
	EUN CLASS										
	FUN CLASS	KUKAL PRINARTINT.									
h		10									

